Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolutionary genetics of host use in swallowtail butterflies

Abstract

PHYTOPHAGOUS insects include many of the most species-rich genera and families worldwide1,2, and much of that diversity seems to result from speciation onto different plant species3–7. Divergence onto different host plants is thought to involve at least two sets of loci, which may be genetically linked: loci controlling the preference of ovipositing females for a particular plant species, and loci controlling the ability of larvae or nymphs to feed on those plants8–11. Others have argued that oviposition preference and larval performance may be pleiotropic effects of the same loci12–15. The genetic relationship between oviposition preference and larval performance has therefore become a central problem in the developing theory of insect and plant interactions16–23 and speciation in insects24–27. Results from interspecific crosses between two swallowtail butterfly species that feed on different plant families indicated that oviposition preference is controlled in these insects primarily by one or more loci on the X chromosome28. In a series of reciprocal interspecific crosses between these species, Papilio zelicaon and Papilo oregonius, we investigated whether larval performance on different plant species was also controlled by X-linked loci, which could allow for strong correlations between oviposition preference and larval performance. We found no X-chromosome effect for any component of larval performance. Loci from both parents influenced survivorship, and maternal effects influenced pupal mass and possibly development time. The results varied with the specific measure of performance, the host plant species used in comparing reciprocal crosses, and the sex of the larvae, all of which caution against the use of any single measure of performance in evaluating the evolutionary genetics of host shifts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Janzen, D. H. Oxford Surveys in Evolutionary Biology 1, 85–140 (1984).

    Google Scholar 

  2. Strong, D. R., Lawton, J. H. & Southwood, R. Insects on Plants: Community Patterns and Mechanisms (Blackwell, Oxford, 1984).

    Google Scholar 

  3. Ehrlich, P. R., & Raven, P. H. Evolution 18, 586–608 (1964).

    Article  Google Scholar 

  4. Southwood, T. R. E. in Insect/Plant Relationships (ed. van Emden, H. F.) 3–30 (Blackwell, Oxford, 1973).

    Google Scholar 

  5. Lawton, J. H. & Schroeder, D. Nature 265, 137–140 (1977).

    Article  ADS  Google Scholar 

  6. Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).

    Google Scholar 

  7. Mitter, C., Farrell B. & Wiegmann, B. Am. Nat. 231, 107–128 (1988).

    Article  Google Scholar 

  8. Bush, G. L. in Evolutionary Strategies of Parasitic Insects and Mites (ed. Price, P. W.) 187–206 (Plenum, London, 1975).

    Book  Google Scholar 

  9. Felsenstein, J. Evolution 35, 124–138 (1981).

    Article  Google Scholar 

  10. Rausher, M. D. Evolution 38, 596–608 (1984).

    Article  Google Scholar 

  11. Diehl, S. R. & Bush, G. L. in Speciation and its Consequences (eds Otte, D. & Endler, J.) 345–365 (Sinauer Associates, Sunderland, Massachusetts, 1989).

    Google Scholar 

  12. Via, S. Evolution 40, 778–785 (1986).

    Article  Google Scholar 

  13. Jaenike, J. Heredity 59, 363–369 (1987).

    Article  Google Scholar 

  14. Lande, R. Genetics 94, 203–215 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Futuyma, D. J. & Peterson, S. C. A. Rev. Entomol. 30, 217–238 (1985).

    Article  Google Scholar 

  16. Bush, G. L. in Evolutionary Behavior Genetics (ed. Huettel, M. D.) 1–5 (Plenum, New York, 1987).

    Google Scholar 

  17. Butlin, R. Trends Ecol. Evol. 2, 309–311 (1987).

    Google Scholar 

  18. Futuyma, D. J. in Evolutionary Behavior Genetics (ed. Huettel, M. D.) 295–302 (Plenum, New York, 1987).

    Google Scholar 

  19. Courtney, S. P. & Chen, G. K. Fund Ecol. 2, 521–528 (1988).

    Article  Google Scholar 

  20. Futuyma, D. J. & Moreno, G. A. Rev. Ecol. Syst. 19, 207–233 (1988).

    Article  Google Scholar 

  21. Ng, D. Nature 334, 611–612 (1988).

    Article  ADS  Google Scholar 

  22. Singer, M. C., Ng, D. & Thomas, C. D. Evolution 42, 977–985 (1988).

    Article  CAS  Google Scholar 

  23. Thompson, J. N. Entomol. exp. Appl. 47, 3–14 (1988).

    Article  Google Scholar 

  24. Tauber, C. A. & Tauber, M. J. Evol. Ecol. 1, 175–186 (1987).

    Article  Google Scholar 

  25. Courtney Smith, D. Nature 336, 66–67 (1988).

    Article  Google Scholar 

  26. Feder, J. L., Cholcote, C. A. & Bush, G. L. Nature 336, 61–64 (1988).

    Article  ADS  Google Scholar 

  27. McPheron, B. A., Courtney Smith, D. & Berlocher, S. H. Nature 336, 64–66 (1988).

    Article  ADS  Google Scholar 

  28. Thompson, J. N. Evolution 42, 1223–1234 (1988).

    Article  Google Scholar 

  29. Miller, J. S. Bull. Am. Mus. nat. Hist. 186, 365–512 (1987).

    Google Scholar 

  30. Scriber, J. M. Tokurana (Acta Rhopal.) 6/7, 1–50 (1984).

    Google Scholar 

  31. Wiklund, C. Oikos 36, 163–170 (1981).

    Article  Google Scholar 

  32. Berenbaum, M. Evolution 37, 163–179 (1983).

    Article  CAS  Google Scholar 

  33. Clarke, C. A. & Larsen, T. B. Syst. Entomol. 11, 175–181 (1986).

    Article  Google Scholar 

  34. Thompson, J. N. Evolution 42, 118–128 (1988).

    Article  Google Scholar 

  35. Feeny, P. in Herbivory: Tropical and Temperate Perspectives (eds Price, P. W., Lewinsohn, T. M., Benson, W. W. & Fernandes, G. W.) (Wiley, New York, in the press).

  36. Scriber, J. M., Lederhouse, R. C. & Hagen, R. H. in Herbivory: Tropical and Temperate Perspectives (eds Price, P. W., Lewinsohn, T. M., Benson, W. W. & Fernandes, G. W.) (Wiley, New York, in the press).

  37. White, M. J. D. Animal Cytology and Evolution (Cambridge University Press, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J., Wehling, W. & Podolsky, R. Evolutionary genetics of host use in swallowtail butterflies. Nature 344, 148–150 (1990). https://doi.org/10.1038/344148a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/344148a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing