Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Host–parasitoid associations in patchy environments

Abstract

STUDIES of insect host–parasitoid interactions have contributed much to the consensus that spatial patchiness is important in the regulation of natural populations1–5. A variety of theoretical models predict that host and parasitoid populations, although unstable in the absence of environmental heterogeneity, may persist at roughly steady overall densities in a patchy environment owing to variation in levels of parasitism from patch to patch. Observed patterns of parasitism, however, have a variety of forms (with variation in attack rates among patches depending directly or indirectly on host density, or showing variation uncorrelated with host density). There is some confusion about the dynamical consequences of these different forms6,7. Here we first show how the dynamical effects of all these forms of environmental heterogeneity can be assessed by a common criterion. This 'CV2 > 1 rule' states that the overall population densities will remain roughly steady from generation to generation if the coefficient of variation squared (CV2) of the density of searching parasitoids in the vicinity of each host exceeds approximately unity. By partitioning CV2 into components, we show that both direct and inverse patterns of dependence on host density, and density-independent patterns, all contribute to population regulation in the same way. Second, we show how a maximum-likelihood method can be applied to the kind of field data that are usually available (that is, percentage parasitism versus local host density) to estimate the components of CV2. This analysis indicates that heterogeneity is large enough to stabilize dynamics in 9 of 34 published studies, and that density-independent heterogeneity is the main factor in most cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hassell, M. P. & May, R. M. J. Anim. Ecol. 43, 567–594 (1974).

    Article  Google Scholar 

  2. Hassell, M. P. & May, R. M. Ann. zool. Fenn. 25, 55–61 (1988).

    Google Scholar 

  3. Chesson, P. L. & Murdoch, W. W. Am. Nat. 127, 696–715 (1986).

    Article  Google Scholar 

  4. Reeve, J. D. Am. Nat. 132, 810–836 (1988).

    Article  Google Scholar 

  5. Taylor, A. D. Am. Nat. 132, 417–436 (1988).

    Article  Google Scholar 

  6. Ehler, L. E. Environ. Ent. 15, 1268–1271 (1986).

    Article  Google Scholar 

  7. Hassell, M. P. Ecol. Ent. 7, 365–377 (1982).

    Article  Google Scholar 

  8. Lessells, C. M. J. Anim. Ecol. 54, 27–41 (1985).

    Article  Google Scholar 

  9. Stiling, P. D. Ecology 68, 844–856 (1987).

    Article  Google Scholar 

  10. Walde, S. J. & Murdoch, W. W. A. Rev. Ent. 33, 441–466 (1988).

    Article  Google Scholar 

  11. Hassell, M. P. IMA J. appl. med. Biol. 1, 33 (1984).

    Google Scholar 

  12. Hassell, M. P. The Dynamics of Arthropod Predator-Prey Systems (Princeton University Press, 1978).

    MATH  Google Scholar 

  13. Hassell, M. P., May, R. M., Pacala, S. & Chesson, P. Am. Nat. (in the press).

  14. Waage, J. K. Ecol. Ent. 8, 447–453 (1983).

    Article  Google Scholar 

  15. Smith, A. D. M. & Maelzer, D. A. Ecol. Ent. 11, 425–434 (1986).

    Article  Google Scholar 

  16. Casas, J. Physiol. Ent. 13, 373–380 (1988).

    Article  Google Scholar 

  17. Casas, J. Ecol. Ent. 14, (1989).

  18. Griffiths, K. J. Can. Ent. 101, 673–713 (1969).

    Article  Google Scholar 

  19. Griffiths, K. J. & Holling, C. S. Can. Ent. 101, 785–818 (1969).

    Article  Google Scholar 

  20. May, R. M. J. Anim. Ecol. 47, 833–843 (1978).

    Article  Google Scholar 

  21. Hassell, M. P. & May, R. M. J. Anim. Ecol. 42, 693–726 (1973).

    Article  Google Scholar 

  22. Pacala, S. & Hassell, M. P. Am. Nat. (in the press).

  23. Brown, M. W. & Cameron, E. A. Environ. Ent. 8, 77–80 (1979).

    Article  CAS  Google Scholar 

  24. Hassell, M. P., Lessells, C. M. & McGavin, G. C. Ecol. Ent. 10, 393–402 (1985).

    Article  Google Scholar 

  25. Ehler, L. E. Environ. Ent. 15, 1268–1271 (1986).

    Article  Google Scholar 

  26. Elliott, J. M. J. Anim. Ecol. 52, 315–330 (1983).

    Article  Google Scholar 

  27. Freeman, B. E. & Parnell, J. R. J. Anim. Ecol. 42, 779–784 (1983).

    Article  Google Scholar 

  28. Heads, P. A. & Lawton, J. H. Oikos 40, 267–276 (1983).

    Article  Google Scholar 

  29. Jones, T. H. & Hassell, M. P. Ecol. Ent. 13, 309–317 (1988).

    Article  Google Scholar 

  30. Hirose, Y., Kimoto, H. & Hiemata, K. Appl. Ent. Zool. 11, 116–125 (1976).

    Article  Google Scholar 

  31. McClure, M. S. Environ. Ent. 6, 551–555 (1977).

    Article  Google Scholar 

  32. Munster-Svendsen, M. Ecol. Ent. 5, 373–383 (1980).

    Article  Google Scholar 

  33. Murdoch, W. W., Reeve, J. D., Huffaker, C. E. & Kennett, C. E. Am. Nat. 123, 92 (1984).

    Article  Google Scholar 

  34. Smith, A. D. M. & Maelzer, D. A. Ecol. Ent. 11, 425–434 (1986).

    Article  Google Scholar 

  35. Stiling, P. D. J. Anim. Ecol. 43, 793–805 (1980).

    Article  Google Scholar 

  36. Strassman, J. E. Ecology 62, 1225–1233 (1981).

    Article  Google Scholar 

  37. Thorarinsson, K. Ecology (in the press).

  38. Trexler, J. C. Oikos 44, 415–422 (1985).

    Article  Google Scholar 

  39. Weseloh, R. M. Ann. ent. Soc. Am. 65, 64–69 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacala, S., Hassell, M. & May, R. Host–parasitoid associations in patchy environments. Nature 344, 150–153 (1990). https://doi.org/10.1038/344150a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/344150a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing