Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The heptad repeat in the largest subunit of RNA polymerase II binds by intercalating into DNA

Abstract

A TANDEM repeat of the sequence Ser-Pro-Thr-Ser-Pro-Ser-Tyr has been found at the C terminus in the largest subunit of RNA polymerase II (refs 1–5) with, for example, 26 units in yeast2 and 52 in mammals3,5. By removal of this 'tail', it has been shown that 11–23 units are necessary for the normal functioning of the poly-merase4,5. The functional role of the repeat is however, unclear, although it has been proposed that it binds to transcription factors6. As discussed in an earlier paper7, the repeat unit contains two Ser-Pro sequences which seem to be related to a DNA-binding unit found in histones, Ser-Pro-Lys-Lys8, and to the Ser-Pro-X-X motif which is often found in gene regulatory proteins and which, it has been proposed, is also a DNA-binding unit7. Here, I show that the repeat does indeed bind DNA and present evidence that it does so by the intercalation of tyrosine residues. These experi-ments involved synthetic peptides containing one or two repeat units. As the sequence Ser-Pro-X-X (where X represents any amino acid) has a strong tendency to assume a special β-turn7, a model of the unit composed of two such β-turns was made and compared with the structure of the drug Triostin A which is known to intercalate into DNA9,10. Two tyrosine side chains of the repeat overlap well with two quinoxaline rings of the drug and therefore, the model can provide a good explanation of the experimental results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Corden, J. L., Cadena, D. L., Ahearn, J. M. & Dahmus, M. E. Proc. natn. Acad. Sci. U.S.A. 82, 7934–7938 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Allison, L. A., Moyle, M., Shales, M. & Ingles, C. J. Cell 42, 599–610 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Ahearn, J. M., Bartolomei, M. S., West, M. L., Cisek, L. J. & Corden, J. L. J. biol. Chem. 262, 10695–10705 (1986).

    Google Scholar 

  4. Zehring, W. A., Lee, J. M., Weeks, J. R., Jokerst, R. S. & Greenleaf, A. L. Proc. natn. Acad. Sci. U.S.A. 85, 3698–3702 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Allison, L. A., Wong, J.K.-C., Fitzpatrick, V. D., Moyle, M. & Ingles, C. J. molec. Cell Biol. 8, 321–329 (1988).

    Article  CAS  Google Scholar 

  6. Sigler, P. B. Nature 333, 210–212 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Suzuki, M. J. molec. Biol. 207, 61–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki, M. EMBO. J. 8, 797–804 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, A.H.-J. et al. Science 225, 1115–1121 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Quigley, G. J. et al. Science 232, 1255–1258 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Crawford, L. V. & Waring, M. J. J. molec. Biol. 25, 23–30 (1967).

    Article  CAS  PubMed  Google Scholar 

  12. Waring, M. J. J. molec. Biol. 54, 247–279 (1970).

    Article  CAS  PubMed  Google Scholar 

  13. Waring, M. J. & Wakelin, L. P. G. Nature 252, 653–657 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Wakelin, L. P. G. & Waring, M. J. Biochem. J. 150, 721–740 (1976).

    Article  Google Scholar 

  15. Lee, J. S. & Waring, M. J. Biochem. J. 173, 129–144 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, J. S. & Waring, M. J. Biochem. J. 173, 115–128 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hélène, C., Monttenay-Garestier, T., & Dimicoli, J.-L. Biochim. biophys. Acta 154, 349–365 (1970).

    Google Scholar 

  18. Hélène, C. Nature New Biol. 234, 120–121 (1971).

    Article  PubMed  Google Scholar 

  19. McGhee, J. D. & von Hippel, P. J. molec. Biol. 86, 469–489 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. McGhee, J. D. & von Hippel, P. J. molec. Biol. 103, 679 (1976).

    Article  Google Scholar 

  21. Laugǎa, P., Markovitz, J., Delbarre, A., LePec, J.-B. & Roques, B. P. Proc. natn. Acad. Sci. U.S.A. 24, 5567–5575 (1985).

    Google Scholar 

  22. Wilmot, C. M. & Thornton, J. M. J. molec. Biol. 203, 221–232 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Dreyfuss, G., Swanson, M. S. & Rinol-Roma, S. Trends Biochem. Sci. 13, 86–91 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Alberts, B., Frey, L., & Delius, H. J. J. molec. Biol. 68, 139–152 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Bartholomew, B., Dahmus, M. E. & Meares, C. F. J. biol. Chem. 261, 14226–14231 (1986).

    CAS  PubMed  Google Scholar 

  26. Allison, L. A. & Ingeles, C. J. Proc. natn. Acad. Sci. U.S.A. 86, 2749–2798 (1989).

    Article  Google Scholar 

  27. Wang, A.H.-J., Ughetto, G., Quigley, G. J. & Rich, A. J. biomolec. Struct. Dynamics 4, 319–342 (1972).

    Article  Google Scholar 

  28. Churchill, M. E. A. & Suzuki, M. EMBO J. 8, 4189–4195 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, M. The heptad repeat in the largest subunit of RNA polymerase II binds by intercalating into DNA. Nature 344, 562–565 (1990). https://doi.org/10.1038/344562a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/344562a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing