Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of the γ–β phase transformation of Mg2SiO4 at high temperature and pressure

Abstract

THE transformation of Mg1.8Fe0.2SiO4 olivine first to the β-phase (modified spinel) and then to the γ-spinel phase occurs with increasing depth in the Earth's mantle as a result of the increasing pressure1,2. The mechanisms of these two transformations have an important influence on mantle rheology and may also be related to the origin of deep-focus earthquakes3–8. We report here the results of experiments on the phase transformation of Mg2SiO4 olivine at 15 GPa pressure in a multi-anvil cell. At this pressure and a temperature of 900 °C, early formed metastable γ-spinel transforms partially to the β-phase. The observed microstructures, which are similar to those in shocked meteorites9–11, show that the γ-to-β transformation can occur either by diffusion-controlled growth or by a martensitic (shearing) mechanism, depending on how far the pressure-temperature conditions deviate from their values at phase equilibrium. Our results suggest that the diffusion-controlled mechanism is most likely to operate at the β/γ phase boundary in the mantle, but a martensitic β-to-γ transformation might occur in subduction zones and could reduce the shear strength of the subducting slab

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jeanloz, R. & Thompson, A. B. Rev. Geophys. Space Phys. 21, 51–74 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Bina, C. R. & Wood, B. J. J. geophys. Res. 92, 4853–4866 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Poirier, J. P. J. geophys. Res. 87, 6791–6797 (1982).

    Article  ADS  Google Scholar 

  4. Rubie, D. C. in Deformation Processes in Minerals, Ceramics and Rocks (eds Barber, D. J. & Meredith P. G.) 262–295 (Unwin Hyman, London, 1990).

    Book  Google Scholar 

  5. Christensen, U. R. & Yuen, D. A. J. geophys. Res. 90, 10291–10300 (1985).

    Article  ADS  Google Scholar 

  6. Parmentier, E. M. Geophys. Res. Lett. 8, 143–146 (1981).

    Article  ADS  Google Scholar 

  7. Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Green, H. W. & Burnley, P. C. Nature 341, 733–737 (1989).

    Article  ADS  Google Scholar 

  9. Price, G. D., Putnis, A. & Smith, D. G. W. Nature 296, 729–731 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Price, G. D. Phys. Earth planet Inter. 33, 137–147 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Madon, M. & Poirier, J. P. Phys. Earth planet. Inter. 33, 31–44 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Ito, E., Takahashi, E. & Matsui, Y. Earth planet Sci. Lett. 67, 238–248 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Remsberg, A. R., Boland, J. N., Gasparik, T. & Liebermann, R. C. Phys. Chem. Minerals 15, 498–506 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Ito, E. & Takahashi, E. J. geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  15. Brearley, A. J., Rubie, D. C. & Ito, E. Phys. Chem. Minerals (submitted).

  16. Vaughan, P. J. & Kohlstedt, D. L. Phys. Chem. Minerals 7, 241–245 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Kohlstedt, D. L. & Weathers, M. S. J. geophys. Res. 85, 6269–6285 (1980).

    Article  ADS  Google Scholar 

  18. Burnley, P. C. & Green H. W. Nature 338, 753–756 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Plichta, M. R., Clark, W. A. T. & Aaronson, H. I. Metall. Trans. A15, 427–435 (1984).

    Article  Google Scholar 

  20. Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Wokingham, 1981).

    Google Scholar 

  21. Remsberg, A. R. & Liebermann, R. C. Phys. Chem. Minerals. (submitted).

  22. Poirier, J. P. Creep of Crystals (Cambridge University Press, 1985).

    Book  Google Scholar 

  23. Ito, E. & Katsura, T. Geophys. Res. Lett. 16, 425–428 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Meade, C. & Jeanloz, R. Nature 339, 616–618 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Akoagi, M., Ito, E. & Navrotsky, A. J. geophys. Res. 94, 15671–15685 (1989).

    Article  ADS  Google Scholar 

  26. Rubie, D. C. et al. J. geophys. Res. 95, 15829–15844 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubie, D., Brearley, A. Mechanism of the γ–β phase transformation of Mg2SiO4 at high temperature and pressure. Nature 348, 628–631 (1990). https://doi.org/10.1038/348628a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/348628a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing