Abstract
THE transformation of Mg1.8Fe0.2SiO4 olivine first to the β-phase (modified spinel) and then to the γ-spinel phase occurs with increasing depth in the Earth's mantle as a result of the increasing pressure1,2. The mechanisms of these two transformations have an important influence on mantle rheology and may also be related to the origin of deep-focus earthquakes3–8. We report here the results of experiments on the phase transformation of Mg2SiO4 olivine at 15 GPa pressure in a multi-anvil cell. At this pressure and a temperature of 900 °C, early formed metastable γ-spinel transforms partially to the β-phase. The observed microstructures, which are similar to those in shocked meteorites9–11, show that the γ-to-β transformation can occur either by diffusion-controlled growth or by a martensitic (shearing) mechanism, depending on how far the pressure-temperature conditions deviate from their values at phase equilibrium. Our results suggest that the diffusion-controlled mechanism is most likely to operate at the β/γ phase boundary in the mantle, but a martensitic β-to-γ transformation might occur in subduction zones and could reduce the shear strength of the subducting slab
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jeanloz, R. & Thompson, A. B. Rev. Geophys. Space Phys. 21, 51–74 (1983).
Bina, C. R. & Wood, B. J. J. geophys. Res. 92, 4853–4866 (1987).
Poirier, J. P. J. geophys. Res. 87, 6791–6797 (1982).
Rubie, D. C. in Deformation Processes in Minerals, Ceramics and Rocks (eds Barber, D. J. & Meredith P. G.) 262–295 (Unwin Hyman, London, 1990).
Christensen, U. R. & Yuen, D. A. J. geophys. Res. 90, 10291–10300 (1985).
Parmentier, E. M. Geophys. Res. Lett. 8, 143–146 (1981).
Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).
Green, H. W. & Burnley, P. C. Nature 341, 733–737 (1989).
Price, G. D., Putnis, A. & Smith, D. G. W. Nature 296, 729–731 (1982).
Price, G. D. Phys. Earth planet Inter. 33, 137–147 (1983).
Madon, M. & Poirier, J. P. Phys. Earth planet. Inter. 33, 31–44 (1983).
Ito, E., Takahashi, E. & Matsui, Y. Earth planet Sci. Lett. 67, 238–248 (1984).
Remsberg, A. R., Boland, J. N., Gasparik, T. & Liebermann, R. C. Phys. Chem. Minerals 15, 498–506 (1988).
Ito, E. & Takahashi, E. J. geophys. Res. 94, 10637–10646 (1989).
Brearley, A. J., Rubie, D. C. & Ito, E. Phys. Chem. Minerals (submitted).
Vaughan, P. J. & Kohlstedt, D. L. Phys. Chem. Minerals 7, 241–245 (1981).
Kohlstedt, D. L. & Weathers, M. S. J. geophys. Res. 85, 6269–6285 (1980).
Burnley, P. C. & Green H. W. Nature 338, 753–756 (1989).
Plichta, M. R., Clark, W. A. T. & Aaronson, H. I. Metall. Trans. A15, 427–435 (1984).
Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Wokingham, 1981).
Remsberg, A. R. & Liebermann, R. C. Phys. Chem. Minerals. (submitted).
Poirier, J. P. Creep of Crystals (Cambridge University Press, 1985).
Ito, E. & Katsura, T. Geophys. Res. Lett. 16, 425–428 (1989).
Meade, C. & Jeanloz, R. Nature 339, 616–618 (1989).
Akoagi, M., Ito, E. & Navrotsky, A. J. geophys. Res. 94, 15671–15685 (1989).
Rubie, D. C. et al. J. geophys. Res. 95, 15829–15844 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rubie, D., Brearley, A. Mechanism of the γ–β phase transformation of Mg2SiO4 at high temperature and pressure. Nature 348, 628–631 (1990). https://doi.org/10.1038/348628a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/348628a0