Abstract
THEmodulation of voltage-dependent calcium channels by various neurotransmitters has been demonstrated in many neurons1–4. Because of the critical role of Ca2+ in transmitter release and, more generally, in transmembrane signalling, this modulation has important functional implications. Hippocampal neurons possess low-threshold (T-type) Ca2+ channels and both L- and N-type high voltage-activated Ca2+ channels.5–7N-type Ca2+ channels are blocked selectively by ω-conotoxin 8,9 and adenosine 10,11. These substances both block excitatory synaptic transmission in the hippocampus12–13, whereas dihydropyridines, which selectively block L-type channels14, are ineffective12. Excitatory synaptic transmission in the hippocampus displays a number of plasticity phenomena that are initiated by Ca2+ entry through ionic channels operated by N-methyl-D-aspartate (NMDA) receptors15,16. Here we report that NMDA receptor agonists selectively and effectively depress N-type Ca2+ channels which are involved in neurotransmit-ter release from presynaptic sites. The inhibitory effect is eliminated by the competitive NMDA antagonist D-2-amino-5-phosphonovalerate, does not require Ca2+ entry into the cell, and is probably receptor-mediated. This phenomenon may provide a negative feedback between the liberation of excitatory transmitter and entry of Ca2+ into the cell, and could be important in presynaptic inhibition and in the regulation of synaptic plasticity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Dunlap, K. & Fischbach, G. D. J. Physiol., Lond. 317, 519–535 (1981).
Deisz, R. A. & Lux, H. D. Neurosci. Lett. 56, 205–210 (1985).
Bean, B. P. Nature 340, 153–156 (1989).
Toselli, M., Lang, J., Costa, T. & Lux, H. D. Pflugers Arch. ges. Physiol. 415, 255–262 (1989).
Jones, O. T., Kunze, D. L. & Angelidis, K. J. Science 244, 1189–1193 (1989).
Ozawa, S., Tsuzuki, L., Iino, M., Ogura, A. & Kudo, Y. Brain Res. 495, 329–336 (1989).
Takahashi, K., Wakamori, M. & Akaike, N. Neurosci. Lett. 104, 229–234 (1989).
Kasai, H., Aosaki, T. & Fukuda, J. Neurosci. Res. 4, 228–235 (1987).
Plummer, M. R., Logothetis, D. E. & Hess, P. Neuron 2, 1453–1462 (1989).
Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R. & Fox, A. P. Trends Neurosci. 11, 431–438 (1988).
Gross, R. A., Macdonald, R. L. & Ryan-Jastrow, T. J. Physiol., Lond. 411, 585–595 (1989).
Kamiya, H., Sawada, S. & Yamamoto, C. Neurosci. Lett. 91, 84–88 (1988).
Krishtal, O. A., Petrov, A. V., Smirnov S. V. & Nowycky, M. C. Neurosci. Lett. 102, 197–204 (1989).
Fox, A. P., Nowycky, M. C. & Tsien, R. W. J. Physiol., Lond. 394, 149–172 (1987).
Sarvey, J. M., Burgard, E. C. & Decker, G. J. Neurosci. Meth. 28, 109–124 (1989).
Collingridge, G. L. & Bliss, T. V. P. Trends Neurosci. 10, 288–293 (1988).
Zorumski, C. F. & Yang, J. J. Neurosci. 8, 4277–4286 (1988).
Honoré, T., Lavridsen, J. & Kragsgaard-Larsen, P. J. Neurochem. 38, 173–178 (1982).
Krishtal, O. A., Smirnov, S. V. & Osipchuk, Yu. V. Neurosci. Lett. 85, 82–88 (1988).
Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).
Bertolino, M. B., Vicini, S. & Costa, E. Neuropharmacology 28, 453–457 (1989).
Docherty, R. J. & Brown, D. A. Neurosci. Lett. 70, 110–115 (1986).
Gahwiler, B. H. & Brown, D. A. Neuroscience 20, 731–738 (1987).
Okada, Y. & Ozawa, S. Eur. J. Pharmac. 68, 483–492 (1980).
Chizmakov, I. V., Kiskin, N. I., Krishtal, O. A. & Tsyndrenko, A. Ya. Neurosci. Lett. 99, 131–136 (1989).
Krishtal, O. A., Marchenko, S. M. & Pidoplichko, V. I. Neurosci. Lett. 35, 41–45 (1983).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chernevskaya, N., Obukhov, A. & Krishtal, O. NMDA receptor agonists selectively block N-type calcium channels in hippocampal neurons. Nature 349, 418–420 (1991). https://doi.org/10.1038/349418a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/349418a0
This article is cited by
-
Glutamate-induced suppression of inhibitory synaptic transmission in cultivated hippocampal neurons
Neurophysiology (1998)
-
Neuronal and glial localization of NMDA receptors in the cerebral cortex
Molecular Neurobiology (1997)
-
Potentiation of voltage-dependent calcium channel currents by NMDA receptor agonists
Neurophysiology (1997)
-
Modulation of excitatory synaptic transmission by adenosine: Possibility of interaction with Ca-delivering machinery
Neurophysiology (1995)
-
Modulatory effects of diadenosine polyphosphates on different types of calcium channels in the rat central neurons
Neurophysiology (1994)