Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intercalation of copper metal clusters in montmorillonite

Abstract

EXPANDABLE layer silicates such as montmorillonite can be converted to efficient heterogeneous catalysts by introducing catalytically active sites or guest species between the layers or on the external surfaces. Attempts to produce intercalated zero-valent transition-metal particles in layer silicates, by hydrogen reduction for example, have, however, failed: the layers tend to collapse1, sometimes followed by deposition of metal particles on the external surfaces2–4. Here we describe the successful intercalation of copper metal clusters of 4–5 Å in montmorillonite by in situ reduction of Cu2+ ions using ethylene glycol. These metal-cluster intercalates were stable up to at least 500 °C. The clusters prop the silicate layers apart, much as metal oxides do in pillared clays5, and may thus be able to introduce unique catalytic product selectivity through a molecular sieving effect similar to that in cluster-loaded zeolites. As metal clusters of these dimensions behave very differently from the bulk metal6, intercalates of this sort may prove to be versatile catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Patel, M. Clays Clay Miner. 30, 397–399 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Ohtsuka, K. et al. Bull. Chem. Soc. Japan 60, 871–876 (1987).

    Article  CAS  Google Scholar 

  3. Ohtsuka, K., Koga, J., Suda, M., Ono, M. & Takahashi, M. Bull. chem. Soc. Japan 60, 2843–2847 (1987).

    Article  CAS  Google Scholar 

  4. Ohtsuka, K., Suda, M. & Ono, M. Bull. chem. Soc. Japan 61, 815–820 (1988).

    Article  CAS  Google Scholar 

  5. Pinnavaia, T. J. Science 220, 365–371.

  6. Nicolaides, C. P. & Scurrell, M. S. in Keynotes in Energy-Related Catalysis Ch. 6 (Elsevier, New York, 1988).

    Google Scholar 

  7. Minachev, W. M. & Isakov, Ya. I. in Zeolite Chemistry and Catalysis (Am. chem. Soc. monogr. 171) 552–611 (1976).

    Google Scholar 

  8. Jacobs, P. A. in Metal Clusters in Catalysis Ch. 8 (Elsevier, New York, 1986).

    Google Scholar 

  9. Bartley, G. J. J. & Burch, R. Appl. Catal. 28, 209–221 (1986).

    Article  CAS  Google Scholar 

  10. Thomas, J. M. in Intercalation Chemistry Ch. 3 (Academic, London, 1982).

    Google Scholar 

  11. Yamanaka, S., Numata, K. & Hattori, M. in Proc. 8th Int. Clay Conf. (eds Schultz, L. G., van Olphen, H. & Mumpton, F. A.) 273–276 (clay Minerals Society, Bloomington, Indiana, 1987).

    Google Scholar 

  12. Ravindranathan, P., Malla, P. B., Komarneni, S. & Roy, R. Catal. Lett. 6, 401–408 (1990).

    Article  CAS  Google Scholar 

  13. Fievet, F., Lagier, J. P., Blin, B., Beaudon, B. & Figlarz, M. Solid St. Ionics 32/33, 198–205 (1989).

    Article  Google Scholar 

  14. Couglan, B. & Keane, M. J. Catal. 123, 364–374 (1990).

    Article  Google Scholar 

  15. Hofmann, V. U. & Klemen, R. Z. anorg. Chem. 262, 95–99 (1950).

    Article  CAS  Google Scholar 

  16. Malla, P. B. & Komarneni, S. Clays Clay Miner. 38, 363–372 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Pinnavaia, T. J., Tzou, M-S., Landau, S. D. & Raythatha, R. H. J. molec. Catal. 27, 195–212 (1984).

    Article  CAS  Google Scholar 

  18. Ocelli, M. L. in Proc. 8th Int. Clay Conf. (eds Schultz, L. G., van Olphen, H. & Mumpton, F. A.) 319–323 (Clay Minerals Society, Bloomington, Indiana, 1987).

    Google Scholar 

  19. Barrer, R. M. Zeolite and Clay Minerals as Sorbents and Molecules Sieves Ch. 8 (Academic, London, 1978).

    Google Scholar 

  20. Velghe, F., Schoonheydt, R. A. & Uytterhoeven, J. B. Clays Clay Miner. 25, 375–380 (1977).

    Article  ADS  Google Scholar 

  21. Boreskov, G. in Proc. 6th Int. Congress Catal. (eds Bond, G. C., Wells, P. B. & Tompkins, F. C.) 204–215 (Chemical Society, London, 1976).

    Google Scholar 

  22. Curtis, A. C. et al. Angew. Chem. Int. Ed. Engl. 27, 1530–1533 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malla, P., Ravindranathan, P., Komarneni, S. et al. Intercalation of copper metal clusters in montmorillonite. Nature 351, 555–557 (1991). https://doi.org/10.1038/351555a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/351555a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing