Abstract
KNOWLEDGE of the structure of liquid silicates is essential to understanding the properties of materials ranging from magmas in lava flows to melts in glass processing. At 1 atmosphere pressure, a wide range of evidence indicates that most silicon cations in these systems are coordinated by four oxygens in a tetrahedral configuration (SiIV). Molecular dynamics computer simulations of these liquids have, however, predicted that defect complexes (of relatively low abundance) consisting of silicon with five oxygen neighbours (SiV) are of key importance in the mechanism by which viscous flow takes place1–5. I present here direct experimental evidence from 29Si NMR studies of K2Si4O9 glass that SiV does exist in silicate liquids at low pressures, and that the abundance of this species increases with temperature, supporting the idea that SiV defects contribute to 'weakening' of the structure of molten silicates.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Brawer, S. Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, Ohio, 1985).
Angell, C. A., Cheeseman, P. & Tamaddon, S. Bull. Mineral. 106, 87–97 (1983).
Woodcock, L. V., Angell, C. A. & Cheeseman, P. J. chem. Phys. 65, 1565–1577 (1976).
Soules, T. F. J. chem. Phys. 71, 4570–4578 (1979).
Kubicki, J. D. & Lasaga, A. C. Am. Mineral. 73, 941–955 (1988).
Stebbins, J. F. & McMillan, P. Am. Mineral. 74, 965–968 (1989).
Xue, X., Stebbins, J. F., Kanzaki, M. & Tronnes, R. G. Science 245, 962–964 (1989).
Xue, X., Stebbins, J. F., Kanzaki, M., McMillan, P. F. & Poe, B. Am. Mineral. 76, 8–26 (1991).
Stebbins, J. F. & Kanzaki, M. Science 251, 294–298 (1990).
Dupree, R., Holland, D., Mortuza, M. G., Collins, J. A. & Lockyer, M. W. G. J. Non-Cryst. Solids 112, 111–119 (1989).
Farnan, I. & Stebbins, J. F. J. Am. chem. Soc. 112, 32–39 (1990).
Farnan, I. & Stebbins, J. F. J. Non-Cryst. Solids 124, 207–215 (1990).
Shelby, J. E. J. appl. Phys. 47, 4489–4496 (1976).
Scherer, G. W. Relaxation in Glass and Composites (Wiley, New York, 1986).
Brandriss, M. E. & Stebbins, J. F. Geochim. cosmochim. Acta 52, 2659–2670 (1988).
Robie, R. A., Hemingway, B. S. & Fisher, J. R. US geol. Surv. Bull. 1452 (1979).
Geisinger, K. L., Ross, N. L., McMillan, P. & Navrotsky, A. Am. Mineral. 72, 984–994 (1987).
Rustad, J. R., Yuen, D. A. & Spera, F. J. Phys. Rev. A42, 2081–2089 (1990).
Gupta, P. K., Liu, M. L. & Bray, P. J. J. Am. Ceram. Soc. 68, C-82 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Stebbins, J. NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure. Nature 351, 638–639 (1991). https://doi.org/10.1038/351638a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/351638a0
This article is cited by
-
Structural dynamics of basaltic melt at mantle conditions with implications for magma oceans and superplumes
Nature Communications (2020)
-
Effects of Six-fold Coordinated Silicon on Structure and Properties of BaO-SiO2-P2O5 Glasses
Journal of Wuhan University of Technology-Mater. Sci. Ed. (2019)
-
Brittle to Ductile Transition in Densified Silica Glass
Scientific Reports (2014)
-
Molecular level investigation of the dynamic structure model in molten and solid alkali glasses
Structural Chemistry (2012)
-
Shear modulus, heat capacity, viscosity and structural relaxation time of Na2O–Al2O3–SiO2 and Na2O–Fe2O3–Al2O3–SiO2 melts
Physics and Chemistry of Minerals (2010)