Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure

Abstract

KNOWLEDGE of the structure of liquid silicates is essential to understanding the properties of materials ranging from magmas in lava flows to melts in glass processing. At 1 atmosphere pressure, a wide range of evidence indicates that most silicon cations in these systems are coordinated by four oxygens in a tetrahedral configuration (SiIV). Molecular dynamics computer simulations of these liquids have, however, predicted that defect complexes (of relatively low abundance) consisting of silicon with five oxygen neighbours (SiV) are of key importance in the mechanism by which viscous flow takes place1–5. I present here direct experimental evidence from 29Si NMR studies of K2Si4O9 glass that SiV does exist in silicate liquids at low pressures, and that the abundance of this species increases with temperature, supporting the idea that SiV defects contribute to 'weakening' of the structure of molten silicates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brawer, S. Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, Ohio, 1985).

    Google Scholar 

  2. Angell, C. A., Cheeseman, P. & Tamaddon, S. Bull. Mineral. 106, 87–97 (1983).

    CAS  Google Scholar 

  3. Woodcock, L. V., Angell, C. A. & Cheeseman, P. J. chem. Phys. 65, 1565–1577 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Soules, T. F. J. chem. Phys. 71, 4570–4578 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Kubicki, J. D. & Lasaga, A. C. Am. Mineral. 73, 941–955 (1988).

    CAS  Google Scholar 

  6. Stebbins, J. F. & McMillan, P. Am. Mineral. 74, 965–968 (1989).

    CAS  Google Scholar 

  7. Xue, X., Stebbins, J. F., Kanzaki, M. & Tronnes, R. G. Science 245, 962–964 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Xue, X., Stebbins, J. F., Kanzaki, M., McMillan, P. F. & Poe, B. Am. Mineral. 76, 8–26 (1991).

    CAS  Google Scholar 

  9. Stebbins, J. F. & Kanzaki, M. Science 251, 294–298 (1990).

    Article  ADS  Google Scholar 

  10. Dupree, R., Holland, D., Mortuza, M. G., Collins, J. A. & Lockyer, M. W. G. J. Non-Cryst. Solids 112, 111–119 (1989).

    Article  ADS  Google Scholar 

  11. Farnan, I. & Stebbins, J. F. J. Am. chem. Soc. 112, 32–39 (1990).

    Article  CAS  Google Scholar 

  12. Farnan, I. & Stebbins, J. F. J. Non-Cryst. Solids 124, 207–215 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Shelby, J. E. J. appl. Phys. 47, 4489–4496 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Scherer, G. W. Relaxation in Glass and Composites (Wiley, New York, 1986).

    Google Scholar 

  15. Brandriss, M. E. & Stebbins, J. F. Geochim. cosmochim. Acta 52, 2659–2670 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Robie, R. A., Hemingway, B. S. & Fisher, J. R. US geol. Surv. Bull. 1452 (1979).

  17. Geisinger, K. L., Ross, N. L., McMillan, P. & Navrotsky, A. Am. Mineral. 72, 984–994 (1987).

    CAS  Google Scholar 

  18. Rustad, J. R., Yuen, D. A. & Spera, F. J. Phys. Rev. A42, 2081–2089 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Gupta, P. K., Liu, M. L. & Bray, P. J. J. Am. Ceram. Soc. 68, C-82 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stebbins, J. NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure. Nature 351, 638–639 (1991). https://doi.org/10.1038/351638a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/351638a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing