Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Hubble constant from VLA measurement of the time delay in the double quasar 0957+561

Abstract

IN the double quasar 0957 + 0561, the first detected example of a gravitational lens1, a quasar at redshift z = 1.41 appears as two images separated by ˜6 arcsec and accompanied by an extended radio source2–4. The Hubbie constant, H0, can be estimated from the angular separation and the time delay between the appearance of the same brightness variations in the two images—a method that avoids all the usual uncertainties that attend the estimation of distance by the use of standard candles. From 11 years of Very Large Array (VLA) observations we have found the time delay to be 1.40 ± 0.10 yr, a significantly larger and more robust value than has been obtained from optical measurements5,6. Using a standard lens model7 and taking the observed velocity dispersion of luminous matter in the lensing galaxy8 to measure the true gravitational potential, we find HQ = 46 ± 14 (42 ± 14) km s-1 Mpc-1 for cosmic density parameter ω0 = 0 (1), in approximate agreement with Rhee's recent estimate8. But if, as is likely, there is dark matter in the lensing galaxy, H0 could be as high as 69 ± 21 (63 ± 21) km s-1 Mpc-1. The agreement of several completely independent estimates of H0 gives some confidence that the scale of the Universe is indeed known to about a factor of two.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walsh, D., Carswell, R. F. & Weymann, R. J. Nature 279, 381–384 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Young, P. J. et al. Astrophys. J. 241, 507–520 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Young, P. J. et al. Astrophys. J. 244, 736–755 (1981).

    Article  ADS  Google Scholar 

  4. Roberts, D. H. et al. Astrophys. J. 293, 356–369 (1985).

    Article  ADS  Google Scholar 

  5. Vanderriest, C. et al. Astr. Astrophys. 215, 1–13 (1989).

    ADS  Google Scholar 

  6. Schild, R. E. Astrophys. J. 100, 1771–1776 (1990).

    ADS  Google Scholar 

  7. Falco, E. E., Gorenstein, M. V. & Shapiro, I. I. Astrophys. J. 372, 364–379; Center for Astrophysics Preprint No. 3103 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Rhee, G. Nature 350, 211–212 (1991).

    Article  ADS  Google Scholar 

  9. Refsdal, S. Mon. Not. R. astr. Soc. 132, 101–111 (1966).

    Article  ADS  Google Scholar 

  10. Dyer, C. C. & Roeder, R. C. Astrophys. J. 241, L133–L136 (1980).

    Article  ADS  Google Scholar 

  11. Borgeest, U. & Refsdal, S. Astr. Astrophys. 141, 318–322 (1984).

    ADS  Google Scholar 

  12. Alcock, C. & Anderson, N. Astrophys. J. 302, 43–51 (1986).

    Article  ADS  Google Scholar 

  13. Fukugita, M., Futamase, T. & Kasai, M. Mon. Not. R. astr. Soc. 246, 24P–27P (1990).

    ADS  Google Scholar 

  14. Lehár, J., Hewitt, J. N. & Roberts, D. H. Gravitational Lenses (eds Moran, J. M., Hewitt, J. N. & Lo, K. Y.) 84–89 (Reidel, Dordrecht, 1989).

    Book  Google Scholar 

  15. Edelson, R. A. & Krolik, J. H. Astrophys. J. 333, 646–659 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Rickett, B. J. Ann. Rev. Astr. Astrophys. 28, 561–605 (1990).

    Article  ADS  Google Scholar 

  17. Gorenstein, M. V. et al. Astrophys. J. 334, 42–58 (1988).

    Article  ADS  Google Scholar 

  18. Young, P. J. Astrophys. J. 244, 756–767 (1981).

    Article  ADS  Google Scholar 

  19. Schild, R. E. & Smith, R. C. Astr. J. 101, 813–817 (1991).

    Article  ADS  Google Scholar 

  20. Bonometti, R. J. thesis, Massachusetts Institute of Technology (1985).

  21. Faber, S. M. & Jackson, R. E. Astrophys. J. 204, 668–683 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Kent, S. M. Evolution of the Universe of Galaxies (ed. Kron, R. G.) 109–118 (Astronomical Society of the Pacific, San Francisco, 1990).

    Google Scholar 

  23. Gott, J. R. III Ann. Rev. Astr. Astrophys. 15, 235–266 (1977).

    Article  ADS  Google Scholar 

  24. van den Bergh, S. The Extragalactic Distance Scale (eds van den Bergh, S. & Pritchet, C. J.) 375–377 (Astronomical Society of the Pacific, San Francisco, 1988).

    Google Scholar 

  25. Bartel, N. IAU Symp. No. 129, The Impact of VLBI on Astrophysics and Geophysics (eds Reid, M. J. & Moran, J. M.) 175–184 (Reidel, Dordrecht, 1988).

    Book  Google Scholar 

  26. Kochanek, C. S. Astrophys. J. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, D., Lehár, J., Hewrtt, J. et al. The Hubble constant from VLA measurement of the time delay in the double quasar 0957+561. Nature 352, 43–45 (1991). https://doi.org/10.1038/352043a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/352043a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing