Abstract
FORMATION of α helices from disordered polypeptides depends on the degree to which amino acids favour the helical state. The folding of helical oligopeptides can be modelled by two parameters: σ which reflects helix initiation and s which reflects propagation of a pre-existing helix and measures helical bias1,2. Scheraga has reported s values for oligopeptides of about 1.1, implying a weak helical bias for amino-acid residues3. By contrast, certain helical peptides studied by Baldwin seem to require much larger s values for alanine4. Resolution of this inconsistency requires experiments that disentangle the ease of propagation from that of initiation. In this study varying lengths of polyalanine are linked to a 'template' that initiates helical structure and permits study solely of propagation. We report here that the s value for alanine in water is close to 1, supporting the earlier results of Scheraga but not the more recent results of Baldwin.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Poland, D. & Scheraga, H. A. Theory of Helix-Coil Transitions in Biopolymers (Academic, New York, 1970).
Zimm, B. H. & Bragg, J. J. chem. Phys. 31, 526–535 (1959).
Scheraga, H. A. Pure appl. Chem. 50, 315–324 (1978).
Marqusee, S. & Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 86, 5286–5290 (1989).
Kemp, D. S. & Curran, T. P. Tetrahedron Lett. 29, 4931–4939 (1988).
Kemp, D. S. & Boyd, J. G. Pept. Proc. Am. Pept. Symp. 11, 677–679 (1990).
Kemp, D. S., Curran, T. P., Boyd, J. G. & Muendel, C. C. J. org. Chem. (in the press).
Karle, I. L., Flippen-Anderson, J., Sukumar, M. & Balaram, P. Proc. natn. Acad. Sci. U.S.A. 84, 5087–5091 (1987).
Bundi, A. & Wuethrich, K. Biopolymers 18, 285–297 (1979).
Wagner, G., Pardi, A. & Wuethrich, K. J. Am. chem. Soc. 105, 5948–5950 (1983).
Pardi, A., Billeter, M. & Wuethrich, K. J. molec. Biol. 180, 741–751 (1984).
Esposito, G., Carver, J. A., Boyd, J. & Campbell, I. D. Biochemistry 26, 1043–1050 (1987).
Wuethrich, K., Billeter, M. & Braun, W. J. molec. Biol. 180, 715–740 (1984).
Dyson, H. J., Ranee, M., Houghten, R. A., Lerner, R. A. & Wright, P. E. J. molec. Biol. 201, 161–200 (1988).
Bax, A. & Davis, D. J. magn. Reson. 63, 207–213 (1985).
Bothner-By, A., Stephens, R. L. & Lee, J. J. Am. chem. Soc. 106, 811–813 (1984).
Kessler, H., Griesinger, C., Kerssebaum, R., Wagner, K. & Ernst, R. J. Am. chem. Soc. 109, 607–609 (1987).
States, D., Habekorn, R. & Ruben, D. J. magn. Reson. 48, 286–292 (1982).
Manning, M. C., Illangasekare, M. & Woody, R. W. Biophys. Chem. 31, 77–86 (1988).
Bierzynsky, A., Kim, P. S. & Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 79, 2470–2474 (1982).
Dyson, H. J., Ranee, M., Houghten, R. A., Wright, P. E. & Lerner, R. A. J. molec. Biol. 201, 201–217 (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kemp, D., Boyd, J. & Muendel, C. The helical s constant for alanine in water derived from template-nucleated helices. Nature 352, 451–454 (1991). https://doi.org/10.1038/352451a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/352451a0
This article is cited by
-
N-cap helix nucleation: methods and their applications
Science China Chemistry (2017)
-
Development of small molecules designed to modulate protein–protein interactions
Journal of Computer-Aided Molecular Design (2006)
-
Effect of alanine versus glycine in α-helices on protein stability
Nature (1992)
-
Alarums and diversions
Nature (1991)