The remarkable story of the discovery of a set of equations at least three times this century shows once again that independent discoveries can occur and exist for some time.
Enjoying our latest content?
Log in or create an account to continue
- Access the most recent journalism from Nature's award-winning team
- Explore the latest features & opinion covering groundbreaking research
or
References
Da Rios, L. S. Rend. Circ. Mat. Palermo 22, 117–135 (1906).
Levi-Civita, T. Rend. R. Acc. Lincei 17, 3–15 (1908).
Levi-Civita, T. Rend. R. Acc. Lincei 17, 413–426, 535–551 (1908).
Levi-Civita, T. Rend. R. Acc. Lincei 18, 41–50 (1909).
Levi-Civita, T. Rend. Circ. Mat. Palermo 33, 354–374 (1912).
Da Rios, L. S. Rend. R. Acc. Lincei 18, 75–79 (1909).
Da Rios, L. S. Rend. Circ. Mat. Palermo 29, 354–368 (1910).
Levi-Civita, T. Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi (Annali R. Scuola Norm. Sup. Pisa, Zanichelli, Bologna, 1932).
Hama, F. R. & Nutant J. Phys. Fluids 4, 28–32 (1961).
Hama, F. R. Phys. Fluids 5, 1156–1162 (1962).
Arms, R. J. & Hama, F. R. Phys. Fluids 8, 553–559 (1965).
Betchov, R. J. Fluid Mech. 22, 471–479 (1965).
Hasimoto, H. J. Fluid Mech. 51, 477–485 (1972).
Lakshmanan, M., Ruijgrok, T. W. & Thompson, C. J. Physica A84, 577–590 (1976).
Lakshmanan, M. Phys. Lett. A61, 53–54 (1977).
Kida, S. J. Fluid Mech. 112, 397–409 (1981).
Germano, M. Proc. VII natn. Cong. Assoc. Ital. Aeronaut. Astronaut. 1, 163–170 (1983).
Moffatt, H. K. in Turbulence and Chaotic Phenomena in Fluids 223–230 (Elsevier, Amsterdam, 1984).
Hama, F. R. Vortex Motion — Fluid Dynamics Research 3, 149–150 (North-Holland, Amsterdam, 1988).
Murakami, Y., Takahasi, H., Ukita, Y. & Fujihara, S. Oyo Butsuri 6, 151–153 (1937).
Keener, J. P. J. Fluid Mech. 211, 629–651 (1990).
Lamb, G. L. Jr. J. Math. Phys. 18, 1654–1661 (1977).
Ricca, R. L. Phys. Rev. A43, 4281–4288 (1991).
Sym, A. Lett. Nuovo Cimento 41, 353–360 (1984).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ricca, R. Rediscovery of Da Rios equations. Nature 352, 561–562 (1991). https://doi.org/10.1038/352561a0
Issue date:
DOI: https://doi.org/10.1038/352561a0
This article is cited by
-
Structure of Green’s function of elliptic equations and helical vortex patches for 3D incompressible Euler equations
Mathematische Annalen (2024)
-
Travelling helices and the vortex filament conjecture in the incompressible Euler equations
Calculus of Variations and Partial Differential Equations (2022)
-
Evolution of Polygonal Lines by the Binormal Flow
Annals of PDE (2020)
-
Moving boundary problems for an extended Dym equation. Reciprocal connection
Meccanica (2017)
-
On the Vortex Filament Conjecture for Euler Flows
Archive for Rational Mechanics and Analysis (2017)