Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dimension of weather and climate attractors

Abstract

A PROCEDURE for estimating the correlation dimension of the attractor of a dynamical system1 has been applied to a number of data sets that are representative of weather or climate variations. Reported values of the attractor dimension have typically fallen between 3.0 and 8.0 (refs 2–9). Because the atmosphere is so complex, these values have seemed surprisingly low, and doubts as to their appropriateness have been expressed even by the originators of the method8,10,11. Here I apply the procedure to 'data' generated by a mathematical system whose dimension can be evaluated by other means, and identify conditions, apparently satisfied by the studies that use real data, in which the procedure will yield systematic underestimates. It therefore seems unlikely that global weather or climate systems possess low-dimensional attractors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grassberger, P. & Procaccia, I. Phys. Rev. Lett. 50, 346–349 (1983); Physica D3, 189–208 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. Fraedrich, K. J. atmos. Sci. 43, 419–432 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  3. Essex, C., Lookman, T. & Nerenberg, M. A. H. Nature 326, 64–66 (1987).

    Article  ADS  Google Scholar 

  4. Keppenne, C. L. & Nicolis, C. J. atmos. Sci. 46, 2356–2370 (1989).

    Article  ADS  Google Scholar 

  5. Tsonis, A. A. and Elsner, J. B. Nature 333, 545–547 (1988); Bull. Am. met. Soc. 70, 14–23 (1989).

    Article  ADS  Google Scholar 

  6. Sharifi, M. B., Georgakakos, K. P. & Rodriguez-Iturbe, I. J. atmos. Sci. 47, 888–893 (1990).

    Article  ADS  Google Scholar 

  7. Fraedrich, K. & Leslie, L. M. Q. J. R. met. Soc. A115, 79–91 (1989).

    Article  ADS  Google Scholar 

  8. Grassberger, P. Nature 323, 609–612 (1986).

    Article  ADS  Google Scholar 

  9. Nicolis, C. & Nicolis, G. Nature 311, 529–532 (1984): 326, 523 (1987).

    Article  ADS  Google Scholar 

  10. Grassberger, P. Nature 326, 524 (1987).

    Article  ADS  Google Scholar 

  11. Procaccia, I. Nature 333, 498–499 (1988).

    Article  ADS  Google Scholar 

  12. Osborne, A. R. & Provenzale, A. Physica D35, 357–381 (1989).

    MathSciNet  Google Scholar 

  13. Theiler, J. J. opt. Soc. Am. A7, 1055–1073 (1990).

    Article  ADS  Google Scholar 

  14. Ruelle, D. Proc. R. Soc. A427, 241–248 (1990).

    Article  ADS  Google Scholar 

  15. Kaplan, J. L. & Yorke, J. A. Lect. Not Math. 730, 204–219 (1979).

    Article  Google Scholar 

  16. Lorenz, E. N. Tellus A36, 98–110 (1984): A42, 378–389 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, E. Dimension of weather and climate attractors. Nature 353, 241–244 (1991). https://doi.org/10.1038/353241a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/353241a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing