Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine

Abstract

THE mutualistic ectomycorrhizal fungi associated with the roots of woody perennials can enhance nutrient uptake and provide protection from pathogens in exchange for up to 40% of the photosynthate produced by host plants1–9. By removing photo-synthetic tissue, herbivores could reduce the amount of photosynthate available for maintaining this mutualism10–15, 29. Here we examine how ectomycorrhizal levels vary between trees resistant and susceptible to an insect herbivore, and demonstrate how mycorrhizal levels respond to the experimental removal of a native herbivore under natural conditions. We find that pinyon pine trees susceptible to chronic insect attack have 33% fewer ectomycor-rhizae than resistant trees, demonstrating that the herbivore–mycorrhizae–host plant interaction differs between resistant and susceptible trees. We removed insects from susceptible trees and find that the mycorrhizal levels of these trees increased to a level comparable to that of resistant trees. This demonstrates that herbivores negatively affect the mutualism between ectomycorrhizal fungi and susceptible trees, and that mycorrhizal levels can rebound after herbivore removal. The dynamics of these interactions on resistant and susceptible plants could be important for understanding plant–pest interactions in natural and managed systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meyer, F. H. in Ectomycorrhizae: Their Ecology and Physiology (eds Marks, G. C. & Kozlowski, T. T.) 79–105 (Academic, London, 1973).

    Book  Google Scholar 

  2. Marx, D. H. in Ectomycorrhizae: Their Ecology and Physiology (eds Marks, G. C. & Kozlowski, T. T.) 351–381 (Academic, London, 1973).

    Book  Google Scholar 

  3. Bowen, G. D. in Ectomycorrhizae: Their Ecology and Physiology (eds Marks, G. C. & Kozlowski, T. T.) 151–205 (Academic, London, 1973).

    Book  Google Scholar 

  4. Hacskaylo, E. in Ectomycorrhizae: Their Ecology and Physiology (eds Marks, G. C. & Kozlowski, T. T.) 207–230 (Academic, London, 1973).

    Book  Google Scholar 

  5. Reid, C. P. P. in The Rhizosphere (ed. Lynch, J. M.) 281–315 (Wiley: New York, 1990).

    Google Scholar 

  6. Scott, G. D. Plant Symbiosis (St. Martins, New York, 1969).

    Google Scholar 

  7. Dehne, H. W. Phytopathology 70, 293–296 (1982).

    Google Scholar 

  8. Fogel, R. & Hunt, G. Can. J. For. Res. 9, 245–256 (1979).

    Article  Google Scholar 

  9. Harley, J. L. & Smith, S. E. Mycorrhizal Symbosis (Academic, London, 1983).

    Google Scholar 

  10. Bethlenfalvay, G. J. & Dakessian, S. J. Range Mgmt 37, 312–316 (1984).

    Article  Google Scholar 

  11. Bethlenfalvay, G. J., Evans, R. A. & Lesperance, A. L. Agron. J. 77, 233–236 (1985).

    Article  Google Scholar 

  12. Borowicz, V. A. & Fitter, A. H. Oecologia 82, 402–407 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Daft, M. J. & El-Giahmi, A. A. New Phytol. 80, 365–372 (1978).

    Article  CAS  Google Scholar 

  14. Trent, J. D., Wallace, L. L., Svejcar, T. J. & Christiansen, S. Can. J. Plant Sci. 68, 115–120 (1988).

    Article  Google Scholar 

  15. Jones, C. G. & Last, F. T. in Microbial Mediation of Plant-Herbivore Interactions (eds Barbosa, P., Krischik, V. A. & Jones, C. G.) 65–104 (Wiley, New York, 1991).

    Google Scholar 

  16. Whitham, T. G. & Mopper, S. Science 228, 1089–1091 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Mopper, S., Mitton, J. B., Whitham, T. G., Cobb, N. S. & Christensen, K. M. Evolution 45, 989–999 (1991).

    Article  Google Scholar 

  18. Harvey, A. E., Larsen, M. J. & Jurgensen, M. F. For. Sci. 22, 393–398 (1976).

    Google Scholar 

  19. Wilcox, H. E. in Methods and Principles of Mycorrhizal Research (ed. Schenck, N. C.) 103–114 (American Phytopathological Society, St. Paul, 1982).

    Google Scholar 

  20. Rabin, L. B. & Pacovsky, R. S. J. Econ. Ent. 78, 1358–1363 (1985).

    Article  Google Scholar 

  21. Findlay, R. in Ecological Interactions in Soil: Plants, Microbes and Animals (eds Fitter, A. H., Atkinson, D., Read, D. J. & Usher, M. B.) 319–331 (Blackwell Scientific, Palo Alto, 1985).

    Google Scholar 

  22. McGonigle, T. P., & Fitter, A. H. in Mycorrhizae in the Next Decade: Practical Applications and Research Priorities (eds Sylvia, D. M., Hung, L. L. & Graham, J. H.) 209 (Institute of Food and Agricultural Studies, University of Florida, Gainesville, 1987).

    Google Scholar 

  23. McGonigle, T. P. & Fitter, A. H. Proc. R. Soc. Edinb. B94, 25–32 (1988).

    Google Scholar 

  24. Rabatin, S. C. & Stinner, B. R. in Microbial Mediation of Plant-Herbivore Interactions (eds Barbosa, P., Krischik, V. A. & Jones, C. G.) 141–168 (Wiley, New York, 1991).

    Google Scholar 

  25. Cline, H. L. & Reid, C. P. P. For. Sci. 28, 237–250 (1982).

    Google Scholar 

  26. Last, F. T., Wilson, J. & Mason, P. A. Agric. Ecosyst. Environ. 28, 293–298 (1990).

    Article  Google Scholar 

  27. Zar, J. H. Biostatistical Analysis (Prentice-Hall, Englewood Cliffs, 1984).

    Google Scholar 

  28. Snedecor, G. W. & Cochran, W. G. Statistical Methods (Iowa State University Press, Ames, 1980).

    MATH  Google Scholar 

  29. Last, F. T., Pelham, J., Mason, P. A. & Ingleby, R. Nature 280, 168–169 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehring, C., Whitham, T. Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature 353, 556–557 (1991). https://doi.org/10.1038/353556a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/353556a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing