Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of an RNA double helix incorporating a track of non-Watson–Crick base pairs

Abstract

THE crystal structure of the RNA dodecamer duplex (r-GGACUUCGGUCC)2 has been determined. The dodecamers stack end-to-end in the crystal, simulating infinite A-form helices with only a break in the phosphodiester chain. These infinite helices are held together in the crystal by hydrogen bonding between ribose hydroxyl groups and a variety of donors and acceptors. The four noncomplementary nucleotides in the middle of the sequence did not form an internal loop, but rather a highly regular double-helix incorporating the non-Watson–Crick base pairs, G · U and U · C. This is the first direct observation of a U · C (or T · C) base pair in a crystal structure. The U · C pairs each form only a single base–base hydrogen bond, but are stabilized by a water molecule which bridges between the ring nitrogens and by four waters in the major groove which link the bases and phosphates. The lack of distortion introduced in the double helix by the U · C mismatch may explain its low efficiency of repair in DNA. The G · U wobble pair is also stabilized by a minor-groove water which bridges between the unpaired guanine amino and the ribose hydroxyl of the uracil. This structure emphasizes the importance of specific hydrogen bonding between not only the nucleotide bases, but also the ribose hydroxyls, phosphate oxygens and tightly bound waters in stabilization of the intramolecular and intermolecular structures of double helical RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cheong, C., Varani, G. & Tinoco, I. Jr Nature 346, 680 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Varani, G., Cheong, C. & Tinoco, I. Jr Biochemistry 30, 3280 (1991).

    Article  CAS  Google Scholar 

  3. Brunger, A. T. Acta Crystallogr. A45, 46 (1990).

    Article  Google Scholar 

  4. Arnott, S., Hukins, D. W. L. & Dover, S. D. Biochem. biophys. Res. Commun. 48, 1392 (1972).

    Article  CAS  Google Scholar 

  5. Dock-Bregeon, A. C. et al. J. molec. Biol. 209, 459 (1989).

    Article  CAS  Google Scholar 

  6. Hingerty, B., Brown, R. S. & Jack, A. J. molec. Biol. 124, 523 (1978).

    Article  CAS  Google Scholar 

  7. Holbrook, S. R., Sussman, J. L., Warrant, R. W. & Kim, S.-H. J. molec. Biol. 123, 631 (1978).

    Article  CAS  Google Scholar 

  8. Comarmond, M. B., Giege, R., Thierry, J. C., Moras, D. & Fischer, J. Acta Crystallogr. B42, 272 (1986).

    Article  Google Scholar 

  9. Pyle, A. M. & Cech, T. R. Nature 350, 628 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Kneale, G., Brown, T., Kennard, O. & Rabinovich, D. J. molec. Biol. 186, 805 (1985).

    Article  CAS  Google Scholar 

  11. Hunter, W. N. et al. J. biol. Chem. 262, 9962 (1987).

    CAS  PubMed  Google Scholar 

  12. Cech, T. R. Science 236, 1532 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Barfod, E. T. & Cech, T. R. Molec. cell. Biol. 9, 3657 (1989).

    Article  CAS  Google Scholar 

  14. Sugimoto, N., Tomka, M., Kierzek, R., Bevilacqua, P. C. & Turner, D. H. Nucleic Acids Res. 17, 355 (1989).

    Article  CAS  Google Scholar 

  15. Patel, D. J., Kozlowski, S. A., Ikuta, S. & Itakura, K. FASEB J. 43, 2663 (1984).

    CAS  Google Scholar 

  16. Bhattacharyya, A. & Lilley, D. M. J. J. molec. Biol. 209, 583 (1989).

    Article  CAS  Google Scholar 

  17. Eisenstein, M., Frowlow, F., Shakked, Z. & Rabinovich, D. Nucleic Acids Res. 18, 3185 (1990).

    Article  CAS  Google Scholar 

  18. Modrich, P. A. Rev. Biochem. 56, 435 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holbrook, S., Cheong, C., Tinoco, I. et al. Crystal structure of an RNA double helix incorporating a track of non-Watson–Crick base pairs. Nature 353, 579–581 (1991). https://doi.org/10.1038/353579a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/353579a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing