Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geochemical constraints on source region of Cretaceous/Tertiary impact glasses

Abstract

THE 50-cm-thick Cretaceous/Tertiary boundary layer at Beloc in Haiti contains spherules of silicic black glass, 1–8 mm in diameter, which have been attributed to impact fusion of continental crust1. Calcic yellow glass (up to 30 wt% CaO) forms a coating on and streaks within some black glass spherules, and has been attributed to melting of carbonate-rich sediment1, or organic-rich or pyritic limestone2. Here we present new trace-element and stable and radiogenic isotope data which show that the silicic glass is derived from continental crust of andesitic composition, whereas the high-Ca glass formed by melting of evaporite-rich sediment. This is confirmed by melting experiments with evaporite and andesite at 1,200–1,400 °C, which approximately reproduce the high-Ca glass. The temperature-dependent variation of sulphur content in synthetic high-Ca glasses indicates a formation temperature of 1,300 °C for the Haiti glasses. The geology of the impact site inferred from the geochemistry of the Haiti glasses matches the lithologies found in the 180-km Chicxulub structure, which occurs in Cretaceous evaporite deposits in Mexico. The high sulphur content of the calcic glasses suggests that the impact may have generated significant emissions of sulphur dioxide to the atmosphere, causing short-term global cooling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sigurdsson, H. et al. Nature 349, 482–487 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Izett, G. A. Lunar planet. Sci. 22, 625–626 (1991).

    ADS  Google Scholar 

  3. Oskarsson, N. et al. Lunar planet. Sci. 22, 1009 (1991).

    ADS  Google Scholar 

  4. Taylor, S. R. & McLennan, S. M. The Continental Crust: its Composition and Evolution 312 (Blackwell, Oxford, 1985).

    Google Scholar 

  5. White, W. M. & Patchett, J. Earth planet. Sci. Lett. 67, 167–185 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Migdisov, A. A., Ronov, A. B. & Grinenko, V. A. in The Global Geochemical Sulphur Cycle (eds. Ivanov, M. V. & Freney, J. R.) 25–127 (1983).

    Google Scholar 

  7. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. & Zak, T. Chem. Geol. 28, 199–260 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Rye, R. O., Luhr, J. F. & Wasserman, M. D. J. Volcanol. geotherm. Res. 23, 109–123 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Swihart, G. H., Moore, P. B. & Callis, E. L. Geochim. cosmochim. Acta 50, 1297–1301 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Wang, Y. L., Liu, Y. G. & Schmitt, R. A. Geochim. cosmochim. Acta 50, 1337–1355 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Palmer, M. R. & Elderfield, H. Nature 314, 526–528 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Butler, G. P. in The Persian Gulf (ed. Purser, B. H.) 423–452 (Springer, Berlin, 1973).

    Book  Google Scholar 

  13. Cantagrel, J. M., Gourgaud, A. & Robin, C. Bull. Volcanol. 47, 735–748 (1984).

    Article  ADS  Google Scholar 

  14. Prince, A. T. J. Am. Ceram. Soc. 37, 406 (1954).

    Article  Google Scholar 

  15. Osborn, E. F., DeVries, R. C., Gee, K. H. & Kraner, H. M. Trans. AIME 200, 38–39 (1954).

    Google Scholar 

  16. Hlavac, J. The Technology of Glass and Ceramics 431 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  17. Melosh, H. J. & Vickery, A. M. Nature 350, 494–497 (1991).

    Article  ADS  Google Scholar 

  18. Jakes, P., Sen, S. & Matsuishi, K. Abstr. Lunar planet. Soc. Conf. 22, 633–634 (1991).

    ADS  Google Scholar 

  19. Hartung, J. B., Kunk, M. J. & Anderson, R. R. Geol. Soc. Am. Spec. Paper 247, 207–221 (1990).

  20. Koeberl, C. & Hartung, J. B. Lunar planet. Sci. 22, 733–734 (1991).

    ADS  Google Scholar 

  21. Delano, J. W. & Lindsley, D. H. Geochim. cosmochim. Acta 46, 2447–2452 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Penfield, G. T. & Camargo, Z. A. Ann. Meeting Soc. Explor. Geophys. Abstr. 51, 37 (1981).

    Google Scholar 

  23. Pope, K. O., Ocampo, A. C. & Duller, C. E. Nature, 351, 105 (1991).

    Article  ADS  Google Scholar 

  24. Bryant, W. R. et al. Am. Assoc. Petrol. Geol. Bull. 53, 2506–2542 (1969).

    Google Scholar 

  25. Lopez Ramos, E. Geologia de Mexico 2, 2nd edn (University of Mexico, Mexico City, 1979).

    Google Scholar 

  26. Wilhelm, O. & Ewing, M. Geol. Soc. Am. Bull. 83, 575–600 (1972).

    Article  ADS  Google Scholar 

  27. Bateson, J. H. & Hall, I. H. S. Overseas Memoir 3, Inst. Geol. Sci., 44 (1977).

  28. Kring, D. A., Hildebrand, A. R. & Boynton, W. V. Abstr. Lunar planet. Sci. Conf. 22, 755–756 (1991).

    ADS  Google Scholar 

  29. Sigurdsson, H. Paleogeogr. Paleoclim. Paleoecol. 89, 277–289 (1990).

    Article  ADS  Google Scholar 

  30. Pollack, J. B. et al. J. geophys. Res. 81, 1071–1083 (1976).

    Article  ADS  CAS  Google Scholar 

  31. Mosbah, M., Metrich, N. & Massiot, P. Nucl. Instrum. Meth. (in the press).

  32. Turpin, L. et al. Contrib. Miner. Petrol. 104, 163–172 (1990).

    Article  ADS  CAS  Google Scholar 

  33. Robin, C. Andesites (ed. Thorpe, R. S.) 137–147 (Wiley, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigurdsson, H., Bonté, P., Turpin, L. et al. Geochemical constraints on source region of Cretaceous/Tertiary impact glasses. Nature 353, 839–842 (1991). https://doi.org/10.1038/353839a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/353839a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing