Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cellular convection in the atmosphere of Venus

Abstract

AMONG the most intriguing features of the atmosphere of Venus is the presence of cellular structures near and downwind of the subpolar point. Ultraviolet images from the Mariner 10 and Pioneer Venus missions at cloud-top heights of 60–70 km indicate that these cells are chiefly found only during the afternoon at low latitudes, with dark-rimmed cells having horizontal scales of roughly 500–1,000 km, and bright-rimmed cells having horizontal scales of roughly 200–500 km (refs 1, 2). Images of the subsolar region from the recent Galileo flyby of Venus confirm these earlier observations—cellular features with horizontal scales of 250–1,000 km have been observed3 (Fig. la,b). It has been suggested that the structures are atmospheric convection cells2–5, and, in fact, numerical simulations of three-dimensional compressible convection produce features reminiscent of the cellular structures found in the subsolar Venus atmosphere (Fig. 1c)6. There has been some difficulty, however, in accounting for the sizes of these structures. The convection cells were thought to be located in a neutrally stable cloud layer, roughly 50 km above the surface, with a thickness of only a few kilometres. So broad and thin a convection cell would pose a severe challenge to the dynamics of convection. Here we propose that strongly penetrative convection into the stable regions above and below the neutrally stable cloud layer coupled with penetrative convection from the surface increases the vertical dimensions of the cells, thereby helping to explain their large horizontal extent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Murray, B. C. et al. Science 183, 1307–1315 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Rossow, W. B. et al. J. geophys. Res. 85, 8107–8128 (1980).

    Article  ADS  Google Scholar 

  3. Belton, M. J. S. et al. Science 253, 1531–1536 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Belton, M. J. et al. J. atmos. Sci. 33, 1394–1417 (1976).

    Article  ADS  Google Scholar 

  5. Covey, C. C. & G. Schubert, Nature 290, 17–20 (1981).

    Article  ADS  Google Scholar 

  6. Toomre, J. et al. Comp. Phys. Comm. 59, 105–117 (1990).

    Article  ADS  Google Scholar 

  7. Seiff, A. et al. J. geophys. Res. 85, 7903–7933 (1980).

    Article  ADS  Google Scholar 

  8. Linkin, V. M. et al. Cosmic Res. 25, 501–512 (1987).

    Google Scholar 

  9. Avduevskiy, V. S. et al. Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 280–298 (University of Arizona Press, 1983).

    Google Scholar 

  10. Seiff, A. Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 215–279 (University of Arizona Press, 1983).

    Google Scholar 

  11. Pollack, J. B., Toon, O. B. & Boese, R. J. geophys. Res. 85, 8223–8231 (1980).

    Article  ADS  Google Scholar 

  12. Schubert, G. et al. J. geophys. Res. 85, 8007–8025 (1980).

    Article  ADS  Google Scholar 

  13. Tritton, D. J. Nature 257, 110–112 (1975).

    Article  ADS  Google Scholar 

  14. Massaguer, J. M. et al. Astr. Astrophys. 140, 1–16 (1984).

    ADS  Google Scholar 

  15. Zahn, J.-P., Toomre, J. & Latour, J. Geophys. Astrophys. Fluid Dynam. 22, 159–193 (1982).

    Article  ADS  Google Scholar 

  16. Hurlbert, N. E., Toomre, J. & Massaguer, J. M. Astrophys. J. 311, 563–577 (1986).

    Article  ADS  Google Scholar 

  17. Schubert, G. Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 681–765 (University of Arizona Press, 1983).

    Google Scholar 

  18. Hurlbert, N. E., Toomre, J. & Massaguer, J. M. Astrophys. J. 282, 557–573 (1984).

    Article  ADS  Google Scholar 

  19. Agee, E. M., Chen, T. S. & Dowell, K. E. Bull. Am. met. Soc. 54, 1004–1012 (1973).

    Article  Google Scholar 

  20. Schinder, P. J., et al. J. atmos. Sci. 47, 2037–2052 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker II, R., Schubert, G. Cellular convection in the atmosphere of Venus. Nature 355, 710–712 (1992). https://doi.org/10.1038/355710a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/355710a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing