Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linking short-timescale deformation to long-timescale tectonics

Abstract

ONE of the great successes of plate tectonics has been to provide a link between deformations of the lithosphere observed over widely varying timescales. For example, the slip between two plates as measured from young magnetic anomalies (and hence averaged over the past 1–2 Myr) has been found1–3to be compatible with estimates obtained from slip during recent earthquakes, despite the small time interval covered by the earthquake observations. Here we start from the idea4,5 that geological deformations are the long-term cumulative trace of short-term processes such as earthquakes, so that the latter can be described as a high-frequency 'noise' for the former. We return to a theoretical framework6 introduced to model large-scale and long-term tectonics, based on a nonlinear diffusion equation, but here explicitly associate the 'noise' term with earthquakes. The observed power-law relationship between earthquake frequency and magnitude, together with an assumption that strain is on average scale-independent, leads to the prediction that the largest earthquakes will have a Gutenberg-Richter 'b-value' of 1.5, as has recently been reported for large (Mw>7) earthquakes worldwide7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kanamori, H. J. geophys. Res. 82, 2981–2987 (1977).

    Article  ADS  Google Scholar 

  2. Kanamori, H. & Stewards, G. S. Phys. Earth planet. Inter. 11, 312–332 (1976).

    Article  ADS  Google Scholar 

  3. Stewards, L. M. & Okal, E. A. J. geophys. Res. 88, 10495–10507 (1983).

    Article  ADS  Google Scholar 

  4. King, G. C. P., Stein, R. S. & Rundle, J. B. J. geophys. Res. 93, 13307–13318 (1988).

    Article  ADS  Google Scholar 

  5. Sornette, A. & Sornette, D. Europhys. Lett. 9, 197–202 (1989).

    Article  ADS  Google Scholar 

  6. Sornette, D., Davy, P. & Sornette, A. J. geophys. Res. 95, 17353–17361 (1990).

    Article  ADS  Google Scholar 

  7. Pacheco, J. F., Scholz, C. H. & Sykes, L. R. Nature 355, 71–73 (1992).

    Article  ADS  Google Scholar 

  8. Sornette, D. Proc. NATO ASI, Spontaneous Formation of Space-Time Structures and Criticality (eds Riste, T. & Snerrington, D.), 57–106 (Kluwer, Dordrecht, 1991).

    Google Scholar 

  9. Scholz, C. H. & Mandelbrot, B. B. (eds) Fractals in Geophysics (Birkhaüser, Basel, 1989).

  10. Risken, H. The Fokker-Planck equation, 2nd edn (Springer, Berlin, 1989).

    Book  Google Scholar 

  11. Beroza, G. C. & Jordan, T. H. J. geophys. Res. 95, 2458–2510 (1990).

    Article  ADS  Google Scholar 

  12. Rundle, J. B. J. geophys. Res. 93, 6237 (1988).

    Article  ADS  Google Scholar 

  13. Ekström, G. & Diewonski, A. M. Nature 332, 319 (1988).

    Article  ADS  Google Scholar 

  14. Scholz, C. H. The mechanics of Earthquakes and Faulting (Cambridge University Press, 1990).

    Google Scholar 

  15. Ranalli, G. Rheology of the Earth; Deformation and Flow Processes in Geophysics and Geodynamics (Allen & Unwin, Boston, 1987).

    Google Scholar 

  16. Medina, E., Hwa, T., Kardar, M. & Zhang, Y.-C. Phys. Rev. A39, 3053–3075 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Hwa, T. & Kardar, M. Phys. Rev. Lett. 62, 1813–1816 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Hentschel, H. G. E. & Family, F. Phys. Rev. Lett. 66, 1982–1985 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Galambos, J. The Asymptotic Theory of Extreme Order Statistics (J. Wiley, New York, 1978).

    MATH  Google Scholar 

  20. Edwards, S. F. & Wilkinson, D. R. Proc. Roy. Soc. A381, 17 (1982).

    Google Scholar 

  21. Wax, N. (ed) Selected Papers on Noise and Stochastic Processes (Dover, New York, 1954).

  22. Kardar, M., Parisi, G. & Zhang, Y. C. Phys. Rev. Lett. 56, 889–892 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Carlson, J. M. & Langer, J. S. Phys. Rev. Lett. 62, 2632–2635 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sornette, D., Virieux, J. Linking short-timescale deformation to long-timescale tectonics. Nature 357, 401–404 (1992). https://doi.org/10.1038/357401a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/357401a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing