Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is a pyrene-like molecular ion the cause of the 4,430-Å diffuse interstellar absorption band?

Abstract

THE diffuse interstellar bands (DIBs), ubiquitous absorption features in astronomical spectra, have been known since early this century1 and now number more than a hundred. Ranging from 4,400 Å to the near infrared2, they differ markedly in depth, width and shape, making the concept of a single carrier unlikely. Whether they are due to gas or grains is not settled, but recent results3 suggest that the DIB carriers are quite separate from the grains that cause visual extinction. Among molecular candidates the polycyclic aromatic hydrocarbons (PAHs) have been proposed as the possible carriers of some of the DIBs4–7, and we present here laboratory measurements of the optical spectrum of the pyrene cation C16H10+ in neon and argon matrices. The strongest absorption feature falls at4,435 ± 5 Å in the argon matrix and 4,395 ± 5 Å in the neon matrix, both close to the strong 4,430-Å DIB. If this or a related pyrene-like species is responsible for this particular band, it must account for 0.2% of all cosmic carbon. The ion also shows an intense but puzzling broad continuum, extending from the ultraviolet to the visible, similar to what is seen in the naphthalene cation8 and perhaps therefore a common feature of all PAH cations. This may provide an explanation of how PAHs convert a large fraction of interstellar radiation from ultraviolet and visible wavelengths down to the infrared.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Herbig, G. H. Astrophys. J. 196, 129–160 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Herbig, G. H. Astrophys. J. 382, 193–203 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Snow, T. P. & Seab, C. G. Astrophys. J. 382, 189–192 (1991).

    Article  ADS  Google Scholar 

  4. Van der Zwet, G. P. & Allamandola, L. J. Astr. Astrophys. 146, 76–80 (1985).

    ADS  CAS  Google Scholar 

  5. Leger, A. & d'Hendecourt, L. B. Astr. Astrophys. 146, 81–85 (1985).

    ADS  CAS  Google Scholar 

  6. Crawford, M. K., Tielens, A. G. G. M. & Allamandola, L. J. Astrophys. J. 293, L45–L48 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Allamandola, L. J., Tielens, A. G. G. M. & Barker, J. R. Astrophys. J. 290, L25–L28 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Salama, F. & Allamandola, L. J. Astrophys. J. (in the press).

  9. Léger, A. & Puget, J. L. Astr. Astrophys. 137, L5–L8 (1984).

    ADS  Google Scholar 

  10. Shida, T. & Iwata, S. J. Am. chem. Soc. 95, 3473–3483 (1973).

    Article  CAS  Google Scholar 

  11. Pankasem, S. & Thomas, J. K. J. phys. Chem. 95, 7385–7393 (1991).

    Article  CAS  Google Scholar 

  12. Kira, A., Imamura, M. & Shida, T. J. phys. Chem. 80, 1445–1448 (1976).

    Article  CAS  Google Scholar 

  13. Karcher, W., Fordham, R. J., Dubois, J. J., Glaude, P. G. J. M. & Ligthart, J. A. M. in Spectral Atlas of Polycyclic Aromatic Compounds (ed. Commission of European Communities) 92–95 (Reidel, Dordrecht. 1983).

    Google Scholar 

  14. Clar, E. & Schmidt, W. Tetrahedron 32, 2563–2566 (1976).

    Article  CAS  Google Scholar 

  15. Salama, F. & Allamandola, L. J. J. chem. Phys. 94, 6964–6977 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Bondybey, V. E. & Miller, T. A. in Molecular Ions: Spectroscopy. Structure and Chemistry (eds Miller, T. A. & Bondybey, V. E.) 125–173 (North-Holland, New York, 1983).

    Google Scholar 

  17. Andrews, L., Kelsall, B. J. & Blankenship, T. A. J. phys. Chem. 86, 2916–2926 (1982).

    Article  CAS  Google Scholar 

  18. Krelowski, J. in Interstellar Dust (eds Allamandola, L. J. & Tielens, A. G. G. M.) 67–86 (Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

  19. Salama, F. & Allamandola, L. J. J. chem. Phys. 95, 6190–6191 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Hayes, D. S., Mavko, G. E., Radick, R. R., Rex, K. H. & Greenberg, J. M. in Interstellar Dust and Related Topics (eds Greenberg, J. M. & Van de Hulst, H. C), 83–90 (Reidel. Dordrecht, 1973).

  21. Van Breda, I. G. & Whittet, D. C. B. Mon. Not. R. astr. Soc. 195, 79–88 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Sellgren, K. Astrophys. J. 277, 623–633 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Sellgren, K., Luan, L. & Wener, M. W. Astrophys. J. 359, 384–391 (1990).

    Article  ADS  Google Scholar 

  24. Aitken, D. K. & Roche, P. F. Mon. Not. R. astr. Soc. 202, 1233–1244 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salama, F., Allamandola, L. Is a pyrene-like molecular ion the cause of the 4,430-Å diffuse interstellar absorption band?. Nature 358, 42–43 (1992). https://doi.org/10.1038/358042a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/358042a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing