Abstract
THE discovery1–6 of the spherical carbon cage compound buck-minsterfullerene (C60) and the recent development of methods to produce it in bulk7 have led to an explosion in research in the physical and chemical properties of this unique species8,9. Nevertheless, the question of the formation mechanism of C60 (or of the other fullerenes) is still far from settled. We have shown elsewhere that carbon clusters in the gas phase develop from linear chains to planar ring systems to fullerenes as their size increases. One can easily envisage the transformation from chains to rings, but how the three-dimensional near-spherical fullerenes evolve from large planar rings is not obvious. Here we show that 'heating' these large ring systems above their 'melting' point leads to 100% fullerene formation accompanied by the evaporation of a small carbon fragment (C1 or C3 for odd systems and C2 for even systems). We propose a mechanism, based on these data, for efficient C60 production in carbon arcs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kroto, H., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).
Heath, J. R. et al. J. Am. chem. Soc. 107, 7779–7780 (1985).
Zhang, Q. et al. J. phys. Chem. 90, 525–528 (1986).
Liu, Y. et al. Chem. Phys. Lett. 126, 215–217 (1986).
Krätschmer, W., Fostiropolos, K. & Huffman, D. R. Chem. Phys. Lett. 170, 167–170 (1990).
Krätschmer, W., Lamb, L. D., Fostiropolos, K. & Huffman, D. R. Nature 347, 354–358 (1990).
Haufler, R. E. et al. J. phys. Chem. 94, 8634–8636 (1990).
Acct. chem. Res. spec. Issue Buckminster Fullerenes 25(3), 97–175 (1992).
Fullerenes: Synthesis Properties and Chemistry of Large Carbon Clusters (eds Hammond, G. S. & Kuck, V. J.) (Am. chem. Soc. Symp. Series No. 481, Washington DC, 1991).
von Helden, G., Hsu, M.-T., Kemper, P. R. & Bowers, M. T. J. chem. Phys. 95, 3835–3837 (1991).
von Helden, G., Kemper, P. R., Gotts, N. & Bowers, M. T. Science 259, 1300–1302 (1993).
von Helden, G., Hsu, M.-T., Gotts, N., Kemper, P. R. & Bowers, M. T. Chem. Phys. Lett. 204, 15–22 (1993).
von Helden, G., Hsu, M.-T., Gotts, N., Kemper, P. R. & Bowers, M. T. J. phys. Chem. (submitted).
Heath, J. R. in Fullerenes, Synthesis, Properties and Chemistry of Large Carbon Clusters (eds Hammond, G. S. & Kuck, V. J.) 1–27 (Am. chem. Soc. Symp Series No. 481, Washington DC, 1991).
Smalley, R. E. Acct chem. Res. 25, 97–105 (1992).
Wakabayashi, T. & Achiba, Y. Chem. Phys. Lett. 190, 465–468 (1992).
Rubin, Y., Kahr, M., Knobler, C. B., Diederich, F. & Wilkins, C. J. Am. chem. Soc. 113, 495–500 (1991).
McElvany, S. W., Ross, M. M., Goroff, N. S. & Diederich, F. Science 259, 1594–1596 (1993).
Curl, R. F. Phil. Trans. R. Soc. Series A (in the press).
Kemper, P. R. & Bowers, M. T. J. phys. Chem. 95, 5134–5146 (1991); J. Am. chem. Soc. 112, 3231–3232 (1990).
Jarrold, M. F. & Honea, E. C. J. Am. chem. Soc. 114, 459–464 (1992).
Feyereisen, M., Gutowski, M., Simons, J. & Almlöf, J. J. chem. Phys. 96, 2926–2932 (1992).
Jing, X. & Chelikowsky, J. R. Phys. Rev. B46, 15,503 (1992).
Meijer, G. & Bethune, D. S. J. chem. Phys. 93, 7800–7802 (1990).
Johnson, R. D., Yannoni, C. S., Salem, J. & Bethune, D. S. Mater. Res. Soc. Proc. 206, 715 (1991).
Hawkins, J. M., Meyer, A., Loren, S. & Nunlist, R. J. Am. chem. Soc. 113, 9394–9395 (1991).
Ebbesen, T. W., Tabuchi, J. & Tanigaki, K. Chem. Phys. Lett. 191, 336–338 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
von Helden, G., Gotts, N. & Bowers, M. Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature 363, 60–63 (1993). https://doi.org/10.1038/363060a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/363060a0
This article is cited by
-
TAO-DFT investigation of electronic properties of linear and cyclic carbon chains
Scientific Reports (2020)
-
Theoretical investigation on bond and spectrum of cyclo[18] carbon (C18) with sp-hybridized
Journal of Molecular Modeling (2020)
-
Gated trapped ion mobility spectrometry coupled to fourier transform ion cyclotron resonance mass spectrometry
International Journal for Ion Mobility Spectrometry (2016)
-
Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics
Journal of the American Society for Mass Spectrometry (2016)