Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calculating erosion by deep-sea turbidity currents during initiation and flow

Abstract

TURBIDITY currents transport massive amounts of sediment from continental margins to the deep sea. Individual flows can catastrophically remove and redeposit (as turbidites) many hundreds of cubic kilometres of material1,2, with the larger events reaching the bottom of the continental slope to form the abyssal plains3. Here we show that the age range of sediments in individual turbidites can be used directly to estimate both the thickness of failed sediment in the source region (even when its exact location is unknown) and the extent to which the turbidity current caused erosion of the sea bed. Our method involves the comparison of the abundance ratios of microfossil (coccolith) species in turbidites with those in the ocean margin sediments of the source region. Analysis of a recently emplaced turbidite on the Madeira Abyssal Plain shows that it contains a mixture of sediments with an age range of about 200,000 years, equivalent to the failure of a block of sediment about 15 m deep. Radiocarbon dating and coccolith ratios show that the turbidite contains only about 12% of recent, near-surface sediment, indicating that this turbidity current caused surprisingly little erosion en route.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Piper, D. J. W., Shor, A. N., Farre, J. A., O'Connell, S. & Jacobi, R. Geology 13, 538–541 (1985).

    Article  ADS  Google Scholar 

  2. Heezen, B. C. & Ewing, M. Am. Assoc. Petrol. Geol. Bull. 39, 2505–2514 (1955).

    Google Scholar 

  3. Weaver, P. P. E. & Thomson, J. (eds) Geology and Geochemistry of Abyssal Plains (Geol. Soc. Lond. spec. Publ. 31, Blackwell, Oxford, 1987).

  4. Simpson, J. E. A Rev. Fluid Mech. 14, 213–234 (1982).

    Article  ADS  Google Scholar 

  5. Pantin, H. M. Mar. Geol. 31, 59–99 (1979).

    Article  ADS  Google Scholar 

  6. Bagnold, R. A. Proc. R. Soc. A265, 315–319 (1962).

    ADS  Google Scholar 

  7. Parker, G., Fukushima, Y. & Pantin, H. M. J. Fluid Mech. 171, 145–181 (1986).

    Article  ADS  Google Scholar 

  8. Weaver, P. P. E. & Kuijpers, A. Nature 306, 360–363 (1983).

    Article  ADS  Google Scholar 

  9. Weaver, P. P. E. & Rothwell, R. G. in Geology and Geochemistry of Abyssal Plains (eds Weaver, P. P. E. & Thomson, J.). 71–86 (Geol. Soc. Lond. spec. Publ. 31, Blackwell, Oxford, 1987).

    Google Scholar 

  10. Weaver, P. P. E., Rothwell, R. G., Ebbing, J., Gunn, D. & Hunter, P. M. Mar. Geol. 109, 1–20 (1992).

    Article  ADS  Google Scholar 

  11. Thomson, J. & Weaver, P. P. E. Sedim. Geol. (in the press).

  12. Koopmann, B. “Meteor” Forsch-ergerbn. C35, 23–59 (1981).

    Google Scholar 

  13. Weaver, P. P. E. & Hine, N. in Stratigraphic Index of Calcareous Nannofossils (eds A. R. Lord & P. Bown) (British Micropalaeont. Soc. spec. Publ., in the press).

  14. Embley, R. W. in Marine Slides and Other Mass Movements (eds Saxov, S. & Nieuwenhuis, J. K.) 189–213 (Plenum, NewYork, 1982).

    Book  Google Scholar 

  15. Bugge, T. Cont. Shelf Inst., Norway, Publ. 110, (1983).

  16. Ruddiman, W. et al. Proc. ODP Sci. Res. 108 (Ocean Drilling Program, College Station, Texas, 1989).

  17. Thomson, J., Colley, S. & Weaver, P. P. E. Earth planet. Sci. Lett. 90, 157–173 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Erlenkeuser, H. Earth planet. Sci. Lett. 47, 319–326 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Officer, C. B. Mar. Geol. 42, 261–278 (1982).

    Article  ADS  Google Scholar 

  20. Kershaw, P. J. J. envir. Radioactivity 2, 145–160 (1985).

    Article  Google Scholar 

  21. Hoffman, B. W. & van Camerik, S. B. Analyt. Chem. 39, 1198–1199 (1967).

    Article  CAS  Google Scholar 

  22. Imbrie, J. et al. in Milankovitch and Climate (eds Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman B.) 269–305 (NATO ASI series 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, P., Thomson, J. Calculating erosion by deep-sea turbidity currents during initiation and flow. Nature 364, 136–138 (1993). https://doi.org/10.1038/364136a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/364136a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing