Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A siderophore from a marine bacterium with an exceptional ferric ion affinity constant

Abstract

VIRTUALLY all microorganisms require iron for growth. The paucity of iron in surface ocean water (0.02−1.0 nM (refs 1, 2)) has spurred a lively debate concerning iron limitation of primary productivity3–6, yet little is known about the molecular mechanisms used by marine microorganisms to sequester iron. Terrestrial bacteria use a siderophore-mediated ferric uptake system7. A sidero-phore is a low-molecular-mass compound with a high affinity for ferric ion which is secreted by microorganisms in response to low-iron environments; siderophore biosynthesis is regulated by iron levels, with repression by high iron. Although open-ocean marine microorganisms (such as phytoplankton8 and bacteria9) produce siderophores, the nature of these siderophores has not been investigated. We report here the first structure determination, to our knowledge, of the siderophores from an open-ocean bacterium, alterobactin A and B from Alteromonas luteoviolacea. A. luteoviol-acea is found in oligotrophic10 and coastal11 waters. Alterobactin A has an exceptionally high affinity constant for ferric ion. We suggest that at least some marine microorganisms may have developed higher-affinity iron chelators as part of an efficient iron-uptake mechanism which is more effective than that of their terrestrial counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bruland, K. W., Donat, J. R. & Hutchins, D. A. Limnol. Oceanogr. 36, 1555–1577 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Limnol. Oceanogr. 36, 1793–1802 (1991).

    Article  ADS  Google Scholar 

  3. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Price, N. M., Andersen, L. F. & Morel, F. M. M. Deep Sea Res. 38, 1361–1378 (1991).

    Article  ADS  Google Scholar 

  5. Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Nature 345, 156–158 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Sunda, W. G., Swift, D. G. & Huntsman, S. A. Nature 351, 55–57 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Neilands, J. B. Adv. Inorg. Biochem. 8, 63–90 (1990).

    CAS  PubMed  Google Scholar 

  8. Trick, C. G., Andersen, R. J., Gillam, A. & Harrison, P. J. Science 219, 306–308 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Trick, C. G. Curr. Microbiol. 18, 375–378 (1989).

    Article  CAS  Google Scholar 

  10. Andersen, R. J., Wolfe, M. S. & Faulkner, D. J. Mar. Biol. 27, 281–285 (1974).

    Article  CAS  Google Scholar 

  11. Gauthier, M. J. & Flatau, G. N. Can. J. Microbiol. 22, 1612–1619 (1976).

    Article  CAS  Google Scholar 

  12. Reid, R. T. & Butler, A. Limnol. Oceanogr. 36, 1783–1792 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Bax, A. & Summers, M. F. J. Am. chem. Soc. 108, 2093–2094 (1986).

    Article  CAS  Google Scholar 

  14. Bronxli, P. & Gerig, J. T. J. Am. chem. Soc. 112, 3719–3726 (1990).

    Article  Google Scholar 

  15. Teintze, M. & Leong, J. Biochemistry 20, 6457–6462 (1981).

    Article  CAS  Google Scholar 

  16. Salituro, F. G., Agarwal, N., Hofman, T. & Rich, D. H. J. med. Chem. 30, 286–295 (1987).

    Article  CAS  Google Scholar 

  17. Mayor, S. & Hosur, R. V. Magn. Res. Chem. 23, 470–473 (1985).

    Article  CAS  Google Scholar 

  18. Chaberek, S. & Martell, A. E. Organic Sequestering Agents (Wiley, New York, 1959).

    Google Scholar 

  19. Harris, D. C. Quantitative Chemical Analysis (Freeman, San Francisco, 1982).

    Google Scholar 

  20. Loomis, L. D. & Raymond, K. N. Inorg. Chem. 30, 906–911 (1991).

    Article  CAS  Google Scholar 

  21. Perrin, D. D. & Dempsey, B. Buffers for pH and Metal Ion Control (Chapman and Hall, London, 1974).

    Google Scholar 

  22. Jalal, M. A. F. et al. J. Am. chem. Soc. 111, 292–296 (1989).

    Article  CAS  Google Scholar 

  23. Takahashi, A. et al. J. Antibiotics 40, 1671–1676 (1987).

    Article  CAS  Google Scholar 

  24. Marfey, P. Carlsberg Res. Commun. 49, 591–596 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Rich, D. H., Sun, E. T. O. & Ulm, E. J. med. Chem. 23, 27–33 (1980).

    Article  CAS  Google Scholar 

  26. Schwarzenbach, G. & Schwarzenbach, K. Helv. chim. acta 46, 1390–1400 (1963).

    Article  CAS  Google Scholar 

  27. Abdallah, M. A. et al. Abstracts XXVII Int. Conf. Coordination Chemistry, W20 (1989).

  28. Wong, G. B., Kappel, M. J., Raymond, K. N., Matzanke, B. & Winkelmann, G. J. Am. chem. Soc. 105, 810–815 (1983).

    Article  CAS  Google Scholar 

  29. Anderegg, G., L'Eplattenier, F. & Schwarzenbach, G. Helv. chim. acta 46, 1409–1422 (1963).

    Article  CAS  Google Scholar 

  30. Harris, W. R., Carrano, C. J. & Raymond, K. N. J. Am. chem Soc. 101, 2722–2727 (1979).

    Article  CAS  Google Scholar 

  31. Harris, W. R., Carrano, C. J. & Raymond, K. N. J. Am. chem. Soc. 101, 2213–2214 (1979).

    Article  CAS  Google Scholar 

  32. Martell, A. E. & Smith, R. M. Critical Stability Constants Vol. 1 (Plenum, New York, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, R., Livet, D., Faulkner, D. et al. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366, 455–458 (1993). https://doi.org/10.1038/366455a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/366455a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing