Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of strong iron emission from quasars at redshift z > 3

Abstract

QUASARS are distant, luminous objects generally thought to be powered by the accretion of gas onto a supermassive black hole1; their spectra are characterized by broad emission lines originating from a dense region close to the central energy source1. The best-studied spectral region in low-redshift quasars is near the Hβ line at 4,861 Å (in the quasar rest frame) where there are also lines arising from singly ionized iron and doubly ionized oxygen. New technology has enabled us to detect strong iron emission in the spectra of the high-redshift (z > 3) quasars Q0014 + 813 and Q0663 + 680, in which these lines are redshifted to the near-infrared. The strength of this emission suggests an iron abundance (relative to hydrogen) higher than in the solar neighbourhood. This high iron abundance supports the view that quasars are located in the centres of massive galaxies. If type Ia supernovae are responsible for the iron enrichment2, significant star formation must have taken place in the host galaxies at least one billion years earlier, providing a constraint on the age of the Universe at that redshift.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Osterbrock, D. E. & Mathews, W. G. A. Rev. Astr. Astrophys. 24, 171–203 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Matteucci, F. & Greggio, L. Astr. Astrophys. 154, 279–287 (1986).

    ADS  CAS  Google Scholar 

  3. Wampler, E. J. & Oke, J. B. Astrophys. J. 148, 695–704 (1967).

    Article  ADS  CAS  Google Scholar 

  4. Sargent, W. L. W. Astrophys. J. 152, L31–L34 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Osterbrock, D. E. Astrophys. J. 215, 733–745 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Phillips, M. M. Astrophys. J. Suppl. Ser. 38, 187–203 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Bergeron, J. & Kunth, D. Mon. Not. R. astr. Soc. 207, 263–286 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Boroson, T. A. & Green, R. F. Astrophys. J. Suppl. Ser. 80, 109–135 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Collin-Souffrin, S. et al. Astr. Astrophys. 166, 27–35 (1986).

    ADS  CAS  Google Scholar 

  10. Lipari, S., Macchetto, F. D. & Golombeck, D. Astrophys. J. 366, L65–L67 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Lawrence, A. et al. Mon. Not. R. astr. Soc. 235, 261–268 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Bergeron, J. & Kunth, D. Astr. Astrophys 85, L11–L14 (1980).

    ADS  CAS  Google Scholar 

  13. Boksenberg, A. et al. Mon. Not. R. astr. Soc. 178, 451–166 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Krolik, J. H. & Kallman, T. R. Astrophys. J. 324, 714–720 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Netzer, H. & Wills, B. J. Astrophys. J. 275, 445–460 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Hill, G. J., Thompson, K. L. & Elston, R. Astrophys. J. 414, L1–L4 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Lipari, S., Terlevich, R. & Macchetto, F. Astrophys. J. 406, L451–L456 (1993).

    Article  ADS  Google Scholar 

  18. Penston, M. V. Mon. Not. R. astr. Soc. 229, 1P–5P (1987).

    Article  ADS  CAS  Google Scholar 

  19. Miley, G. K. & Miller, J. S. Astrophys. J. 228, L55–L58 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Steiner, J. E. Astrophys, J. 250, 469–477 (1981).

  21. Boroson, T. A. & Oke, J. B. Astrophys. J. 281, 535–544 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Kühr, H. et al. Astr. J. 86, 854–863 (1981).

    Article  ADS  Google Scholar 

  23. Pauliny-Toth, I. I. K. et al. Astr. J. 83, 451–474 (1978).

    Article  ADS  Google Scholar 

  24. Carswell, R. F. et al. Astrophys. J. 381, L5–L8 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Biermann, P. L. et al. Astr. Astrophys. Suppl. Ser. 96, 339–349 (1992).

    ADS  Google Scholar 

  26. Wilkes, B. J., Elvis, M. & McHardy, I. Astrophys. J. 321, L23–L27 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Boroson, T. A. Astrophys. J. 343, L9–L12 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Kühr, H. et al. Astrophys. J. 284, L5–L8 (1984).

    Article  ADS  Google Scholar 

  29. Wills, B. J., Nezter, H. & Wills, D. Astrophys. J. 288, 94–116 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Wheeler, J. C. Sneden, C. & Truran, J. W. Ann. Rev. Astr. Astrophys. 27, 279–349 (1989).

    Article  ADS  CAS  Google Scholar 

  31. Iben, I. Jr. & Tutukov, A. V. Astrophys. J. Suppl. Ser. 54, 335–372 (1984).

    Article  ADS  CAS  Google Scholar 

  32. Hamann, F. & Ferland, G. Astrophys. J. 391, L53–L57 (1992).

    Article  ADS  CAS  Google Scholar 

  33. Hamann, F. & Ferland, G. Astrophys. J. 418, 11–27 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elston, R., Thompson, K. & Hill, G. Detection of strong iron emission from quasars at redshift z > 3. Nature 367, 250–251 (1994). https://doi.org/10.1038/367250a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/367250a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing