Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible role of massive black holes in the generation of galactic magnetic fields

Abstract

THE origin of galactic magnetic fields has been a long-standing puzzle. Models based on standard dynamo theory1–4 encounter several problems, the most fundamental of which is that, in order to explain the strengths of observed large-scale magnetic fields5–7, the fluctuating magnetic fields in galaxies must be unreasonably large8–12: the energy density in these small-scale fields must far exceed the local kinetic energy density. Here we propose an alternative mechanism of magnetic-field generation in galaxies. We show that a seed field can be generated by the rotation of an aspherical cloud of ionized gas around a central massive black hole. Strong shear flows in the rotating gas amplify this seed field, and a relatively slow galactic wind can transport the field to the outer regions of a galaxy in about 100 million years—a timescale short enough to meet the constraints imposed by the observation of strong fields in very young galaxies13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Daly, R. A. & Loeb, A. Astrophys. J. 364, 451–455 (1990).

    Article  ADS  Google Scholar 

  2. Chakrabarti, S. K. Mon. Not. R. astr. Soc. 252, 246–248 (1991).

    Article  ADS  Google Scholar 

  3. Ratra, B. Astrophys. J. 391, L1–L4 (1991).

    Article  ADS  Google Scholar 

  4. Rees, M. J. Q. Jl. Roy. astr. Soc. 28, 197–206 (1987).

    ADS  CAS  Google Scholar 

  5. Jaffe, W. J. Astrophys. J. 241, 925–927 (1980).

    Article  ADS  Google Scholar 

  6. Lawler, J. M. & Dennison, B. Astrophys. J. 252, 81–92 (1982).

    Article  ADS  Google Scholar 

  7. Krause, M. in Galactic and Intergalactic Magnetic Fields (eds Beck, R., Kronberg, P. P. & Wielebinski, R.) 187–196, (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  8. Parker, E. N. Astrophys. J. 401, 137–145 (1992).

    Article  ADS  Google Scholar 

  9. Vainshtein, S. I., Parker, E. N. & Rosner, R. Astrophys. J. 404, 773–780 (1993).

    Article  ADS  Google Scholar 

  10. Vainshtein, S. I. & Rosner, R. Astrophys. J. 376, 199–203 (1991).

    Article  ADS  Google Scholar 

  11. Kulsrud, R. M. & Anderson, S. W. Astrophys. J. 396, 606–630 (1992).

    Article  ADS  Google Scholar 

  12. Tao, L., Cattaneo, F. & Vainshtein, S. I. in Theory of Solar and Planetary Dynamos (eds Matthews, P. C. & Rucklidge, A. M.) (NATO ASI, Cambridge Univ. Press, 1993).

    Google Scholar 

  13. Kronberg, P. P. & Perry, J. J. Astrophys. J. 263, 518–532 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Wolfe, A. M. in QSO Absorption Lines: Probing the Universe (eds Blades, J. C., Turnshek D. & Norman, C. A.) 297–317 (Cambridge Univ. Press, 1988).

    Google Scholar 

  15. Lacy, J. H., Achterman, J. M. & Serabyn, E. Astrophys. J. 380, L71–L74 (1991).

    Article  ADS  Google Scholar 

  16. McGinn, M. T., Sellgren, K., Becklin, E. E. & Hall, D. N. B. Astrophys. J. 338, 824–840 (1989).

    Article  ADS  Google Scholar 

  17. Melia, F. Astrophys. J. 387, L25–L28 (1992).

    Article  ADS  Google Scholar 

  18. Chevalier, R. Astrophys. J. 397, L39–L42 (1992).

    Article  ADS  Google Scholar 

  19. Ozernoy, L. Ann. N.Y. Acad. Sci. 688, 596–597 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Lynden-Bell, D. Phys. Scripta 17, 185–192 (1978).

    Article  ADS  Google Scholar 

  21. Paczynski, B. & Wiita, P. J. Astr. Astrophys. 88, 23–32 (1980).

    ADS  Google Scholar 

  22. Rees, M. J. A. Rev. Astr. Astrophys. 22, 471–506 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Biermann, L. Z. Nature 5a, 65–71 (1950).

    MathSciNet  Google Scholar 

  24. Mestel, L. & Roxburgh, I. W. Astrophys. J. 136, 615–626 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  25. Ciotti, L., D'Ercole, A., Pellegrini, S. & Renzini, A. Astrophys. J. 376, 380–403 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Heiles, C. A. Rev. Astr. Astrophys. 14, 1–22 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Coles, P. Comments Astrophys. 16, 45–60 (1992).

    ADS  Google Scholar 

  28. Valentijn, E. A., Perola, G. C. & Jaffe, W. J. Astr. Astrophys. Suppl. Ser. 28, 333–345 (1977).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, S., Rosner, R. & Vainshtein, S. Possible role of massive black holes in the generation of galactic magnetic fields. Nature 368, 434–436 (1994). https://doi.org/10.1038/368434a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/368434a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing