Abstract
According to a long-standing hypothesis, membrane pumps function by flip-flopping between two protein conformations that allow alternative access of the ion binding site to the two membrane surfaces. Site-specific mutagenesis, time-resolved spectroscopy and X-ray diffraction confirm this mechanism for bacteriorhodopsin, and implicate change of electrostatic interaction at the active site as the trigger for the global protein conformation change during the proton transport cycle.
Similar content being viewed by others
Enjoying our latest content?
Log in or create an account to continue
- Access the most recent journalism from Nature's award-winning team
- Explore the latest features & opinion covering groundbreaking research
or
References
Mitchell, P. Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation (Glynn Research, Bodmin, England, 1966).
Nagle, J. F. & Horowitz, H. J. Proc. natn. Acad. Sci. U.S.A. 75, 298–302 (1978).
Wikström, M. & Krab, K. Biochim. biophys. Acta 549, 177–222 (1979).
Jardetzky, O. Nature 211, 969–970 (1966).
Jencks, W. P. Adv. Enzym. 51, 75–106 (1980).
Tanford, C. A. Rev. Biochem. 52, 379–409 (1983).
Malmström, B. G. Chem. Rev. 90, 1247–1260 (1990).
Mathies, R. A., Lin, S. W., Ames, J. B. & Pollard, W. T. A. Rev. Biophys. biophys. Chem. 20, 491–518 (1991).
Lanyi, J. K. Biochim. biophys. Acta Bio-Energetics 1183, 241–261 (1993).
Henderson, R. et al. J. molec. Biol. 213, 899–929 (1990).
Fodor, S. P. et al. Biochemistry 27, 7097–7101 (1988).
Ames, J. B. & Mathies, R. A. Biochemistry 29, 7181–7190 (1990).
Váró, G. & Lanyi, J. K. Biochemistry 30, 5016–5022 (1992).
Zimányi, L. et al. Biochemistry 3, 8535–8543 (1992).
Zimányi, L., Cao, Y., Needleman, R., Ottolenghi, M. & Lanyi, J. K. Biochemistry 32, 7669–7678 (1993).
Brown, L. S. et al. J. molec Biol. 239, 401–414 (1994).
Koch, M. H. J. et al. EMBO J. 10, 521–526 (1991).
Subramaniam, S., Gerstein, M., Oesterheld, D. & Henderson, R. EMBO J. 12, 1–8 (1993).
Nakasako, M., Kataoka, M., Amemiya, Y. & Tokunaga, F. FEBS Lett. 292, 73–75 (1991).
Kataoka, M. et al. J. molec. Biol. 243, 621–638 (1994).
Birge, R. R. Biochim. biophys. Acta Bio-Energetics 1016, 293–327 (1990).
Raymond, I. et al. Science 261, 58–65 (1993).
Cohen, G. B., Oprian, D. D. & Robinson, P. R. Biochemistry 31, 12592–12601 (1992).
Zvyaga, T. A., Fahmy, K. & Sakmar, T. P. Biochemistry 33, 9753–9761 (1994).
Spudich, J. L. Cell 79, 747–750 (1994).
Oprian, D. D. J. Bioenerg. Biomembr. 24, 211–217 (1993).
Strader, C. D., Fong, T. M., Tota, M. R. & Underwood, D. A. Rev. Biochem. 63, 101–132 (1994).
Copeland, R. A. & Chan, S. I. A. Rev. phys. Chem. 40, 671–698 (1989).
Malmström, B. G. Archs Biochem. Biophys. 280, 233–241 (1990).
Babcock, G. T. & Wikström, M. Nature 356, 301–309 (1992).
Hosier, J. P. et al. J. Bioenerg. Biomembr. 25, 121–136 (1993).
Trumpower, B. L. & Gennis, R. B. A. Rev. Biochem. 63, 675–716 (1994).
Valpuesta, J. M., Henderson, R. & Frey, T. G. J. molec. Biol. 214, 237–251 (1990).
Capaldi, R. A. A. Rev. Biochem. 59, 569–596 (1990).
Thomas, J. W., Puustinen, A., Alben, J. O., Glenis, R. B. & Wikström, M. Biochemistry 32, 10923–10928 (1993).
Wikström, M. et al. Biochim. biophys. Acta 1187, 106–111 (1994).
Malmström, B. G. Acc. Chem. Res. 26, 332–338 (1993).
Brzezinski, P. & Malmström, B. G. Proc. natn. Acad. Sci. U.S.A. 83, 4282–4286 (1986).
Senior, A. E. Physiol. Rev. 68, 177–231 (1988).
Fillingame, R. H. The Bacteria 12, 345–391 (1994).
Boyer, P. D. Biochim. biophys. Acta 1140, 215–250 (1993).
Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Nature 370, 621–628 (1994).
Futai, M., Park, M.-Y., Iwamoto, A., Omote, H. & Maeda, M. Biochim. biophys. Acta 1187, 165–170 (1994).
Gräber, P. Biochim. biophys. Acta 1187, 171–176 (1994).
Groth, G. & Junge, W. Biochemistry 32, 8103–8111 (1993).
Laubinger, W. & Dimroth, P. Biochemistry 28, 7194–7198 (1989).
Laubinger, W., Deckers-Hebestreit, G., Altendorf, K. & Dimroth, P. Biochemistry 29, 5458–5463 (1994).
Boekema, F. J., Berden, J. A. & van Heel, M. G. Biochim. biophys. Acta 851, 353–360 (1986).
Capaldi, R., Aggeler, R., Turina, P. & Wilkins, S. Trends biochem. Sci. 19, 284–289 (1994).
Frauenfelder, H., Parak, H. & Young, R. D. A. Rev. Biophys. biophys. Chem. 17, 451–479 (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lanyi, J. Bacteriorhodopsin as a model for proton pumps. Nature 375, 461–463 (1995). https://doi.org/10.1038/375461a0
Issue date:
DOI: https://doi.org/10.1038/375461a0
This article is cited by
-
Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif
Nature Communications (2016)
-
Archaea — timeline of the third domain
Nature Reviews Microbiology (2011)
-
Imaging bacteriorhodopsinlike molecules of claretmembranes from Tibet halobacteria xz515 by atomic force microscope
Chinese Science Bulletin (2001)
-
Design of biofunctional molecular and supramolecular systems: Membrane transport models
Journal of Chemical Sciences (1996)