Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2· H2O

Abstract

MOLECULAR solids that exhibit ferromagnetism are rare, and thus there is considerable interest in understanding the magnetic coupling mechanisms that operate in the few known examples1. One such material is the charge-transfer salt NH4Ni(mnt)H2O, which consists of stacked planar metal ligands separated by ammonium cations. This salt is an insulator with localized spins that exhibit long-range ferromagnetic order at low temperatures (below 4.5 K)2. Here we show that the Curie temperature demarcating the transition to the ferromagnetic state increases markedly with pressure until ferromagnetic order abruptly disappears at 6.8kbar, indicating that the magnetic coupling is very sensitive to intermolecular separation. Using quantum-chemical calculations3, we show that this pressure dependence arises from a competition between ferromagnetic coupling (resulting from nickel-sulphur intermolecular spin interactions), and antiferromagnetic coupling (from nickel–nickel interactions). We suggest that a similar interplay of spin-polarization effects might play a key role in determining the nature of the ground states (metallic, superconducting and so forth) observed in other molecular materials of this structural type4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, J. S. & Epstein, A. J. Angew. Chem. 33, 385–415 (1994).

    Article  Google Scholar 

  2. Allan, M. L. et al. Synth. Met. 56, 3317–3322 (1993).

    Article  CAS  Google Scholar 

  3. Herman, Z. S. et al. Inorg. Chem. 21, 46–56 (1982).

    Article  CAS  Google Scholar 

  4. Jérome, D. Science 252, 1509–1515 (1991).

    Article  ADS  Google Scholar 

  5. Williams, J. M. et al. Science 252, 1501–1508 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Underhill, A. E., & Clemenson, P. I. Physica 143B, 316–320 (1986).

    Google Scholar 

  7. Kutsumizu, S., Kojima, N., Watanabe, N. & Ban. T. J. chem. Soc. Dalton Trans. 2287–2292 (1990).

  8. Clemenson, P. I., Underhill, A. E., Hursthouse, M. B. & Short, R. L. J. chem. Soc. Dalton Trans. 1689–1691 (1988).

  9. Isett, L. C., Rosso, D. M. & Bottger, G. L. Phys. Rev. B. 22, 4739–4743 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Underhill, A. E. et al. Synth. Met. 19, 953–958 (1987).

    Article  CAS  Google Scholar 

  11. Coomber, A. T. thesis, Univ. Cambridge (1995).

  12. Guy, D. R. P. & Friend, R. H. J. Phys. E. 19, 430–433 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Huang, Z. J. et al. J. appl. Phys. 73, 6563–6565 (1993).

    Article  ADS  CAS  Google Scholar 

  14. McConnell, H. J. chem. Phys. 39, 1910 (1963).

    Article  ADS  CAS  Google Scholar 

  15. Bason, A. D. & Zerner, M. C. Theor. chim. Acta 53, 21–54 (1979).

    Article  Google Scholar 

  16. Zerner, M. C., Loew, G. H., Kirchner, R. F. & Mueller-Westerhoff, U. T. J. Am. chem. Soc. 102, 589–599 (1980).

    Article  CAS  Google Scholar 

  17. Cory, M. thesis, Univ. Florida (1995).

  18. Parker, I. D., Friend, R. H., Clemenson, P. E. & Underhill, A. E. Nature 324, 547–549 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Underhill, A. E. et al. J. Phys. Cond. Matt. 3, 933–954 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Kobayashi, A. et al. Chem. Lett., 1819–1822 (1987).

    Article  Google Scholar 

  21. Brossard, L., Ribault, M., Valade, L. & Cassoux, P. Physica B 143, 378–380 (1986).

    Article  CAS  Google Scholar 

  22. Brossard, L., Ribault, M., Valade, L., Legros, J.-P. & Cassoux, P. Synth. Met. 27, B157–162 (1988).

    Article  CAS  Google Scholar 

  23. Brossard, L., Ribault, M., Valade, L. & Cassoux, P. J. Phys. France 50, 1521–1534 (1989).

    Article  CAS  Google Scholar 

  24. Doublet, M. L. et al. Solid State Commun. 88, 699–703 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Obertelli, S. D., Friend, R. H. Talham, D. R., Kurmoo, M. & Day, P. J. Phys. Cond. Matt. 1, 5671–5680 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Sushko, Y. V., Murata, K., Ito, H., Ishiguro, T. & Saito, G. Synth. Met. 70, 907–910 (1995).

    Article  CAS  Google Scholar 

  27. Welp, U. et al. Phys. Rev. Lett. 69, 840–843 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coomber, A., Beljonne, D., Friend , R. et al. Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2· H2O. Nature 380, 144–146 (1996). https://doi.org/10.1038/380144a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/380144a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing