Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mechanism of dissolution of oxide minerals

Abstract

THE exchange of metal ions between an oxide mineral surface and water occurs in a wide range of processes, including corrosion1, the breakdown of inhaled dusts2,3, soil formation4 and the cycling of toxic substances in the environment5. In studies of the mechanisms of dissolution, the measured rate-law order with respect to protons6–15 cannot be reconciled with the number of protons needed to form any reasonable assumed activated complex. Here we suggest that this discrepancy can be avoided if one takes into account the number of protonation and deprotonation steps leading to detachment of the hydrated metal ion. We show that the experimental proton rate order reflects a net balance of protons removed and attached in these steps. Our mechanism explains why the rate order generally coincides with the metal valence8,9,11,12,16–18, and why there is a similarity between rates of water ligand lability in dissolved complexes and rates of mineral dissolution19–22 and metal desorption23. It eliminates the need to invoke catalysis by protons, and establishes a close consistency between reactions at surfaces and (better understood) ligand-exchange reactions in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blesa, M. A., Morando, P. J. & Regazzoni, A. E. Chemical Dissolution of Metal Oxides (CRC, Boca Raton, FL, 1994).

    Google Scholar 

  2. Kuhn, D. C. & Demers, L M. J. Toxicology and Environmental Health 35, 39–50 (1992).

    Article  CAS  Google Scholar 

  3. Hochella, M. F. in Health Effects of Mineral Dusts (eds Guthrie, D. G. & Mossman, B. T.) 275–305 (Rev. Mineral. 28, Mineral. Soc. Am., 1993).

    Book  Google Scholar 

  4. Hilgard, E. W. Soils: Their Formation, Properties, Compositions and Relations to Climate and Plant Growth in the Humid and Arid Regions 19 (MacMillan, New York, 1914).

    Google Scholar 

  5. Davis, J. A. & Leckie, J. O. in Chemical Modeling in Aqueous Systems (ed. Jenne, E. A.) (Am. chem. Soc., Washington DC, 1979).

    Google Scholar 

  6. Wirth, G. S. & Gieskes, J. M. J. Colloid Interface Sci. 68, 492–500 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Blum, A. & Lasaga, A. C. Geochim. cosmochim. Acta 55, 2193–2201 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Furrer, G. & Stumm, W. Geochim. cosmochim. Acta 50, 1847–1860 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Wieland, E., Wehrli, B. & Stumm, W. Geochim. cosmochim. Acta 52, 1969–1981 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Ganor, J., Mogollòn, J. L. & Lasaga, A. C. Geochim. cosmochim. Acta 59, 1037–1053 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Stumm, W. Chemistry of the Solid-Water Interface (Wiley, New York, 1992).

    Google Scholar 

  12. Stumm, W. & Wollast, R. Rev. Geophys. 28, 53–69 (1990).

    Article  ADS  Google Scholar 

  13. Carroll-Webb, S. A. & Walther, J. V. Geochim. cosmochim. Acta 52, 2609–2623 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Pulfer, K., Schindler, P. W., Westall, J. C. & Grauer, R. J. Colloid Interface Sci. 101, 554–564 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Oelkers, E. H. & Schott, J. Geochim. cosmochim. Acta 59, 5039–5054 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Guy, C. & Schott, J. Chem. Geol. 78, 181–204 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Ludwig, C. & Casey, W. H. J. Colloid Interface Sci. 178, 176–185 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Furrer, G. thesis, ETH Zurich (1985).

  19. Casey, W. H. J. Colloid Interface Sci. 146, 586–589 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Casey, W. H. & Westrich, H. R. Nature 355, 157–159 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Ludwig, C., Casey, W. H. & Rock, P. A. Nature 375, 44–47 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Dove, P. M. & Czank, C. A. Geochim. cosmochim Acta 59, 1907–1916 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Hachiya, K., Sasaki, M., Ikeda, T., Mikami, N. & Yasunaga, T. J. phys. Chem. 88, 27–31 (1984).

    Article  CAS  Google Scholar 

  24. Ludwig, C., Devidal, J.-L. & Casey, W. H. Geochim. cosmochim. Acta 60, 213–224 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Gratz, A. J., Manne, S. & Hansma, P. K. Science 251, 1343–1346 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Hochella, M. F. in Mineral-Water Interface Geochemistry (eds Hochella, M. F. & White, A. F.) Ch. 3 (Rev. Mineral. 23, Mineral. Soc. Am., Washington DC, 1990).

    Book  Google Scholar 

  27. Casey, W. H., Westrich, H. R., Banfield, J. F., Feruzzi, G. & Arnold, G. Nature 366, 253–256 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Casey, W. H. & Bunker, B. in Mineral-Water Interface Geochemistry (eds Hochella, M. F. & White, A. F.) Ch. 9 (Rev. Mineral. 23, Mineral. Soc. Am., Washington DC,1990 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casey, W., Ludwig, C. The mechanism of dissolution of oxide minerals. Nature 381, 506–509 (1996). https://doi.org/10.1038/381506a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/381506a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing