Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Emplacement of the Taupo ignimbrite by a dilute turbulent flow

Abstract

AN ignimbrite is a pumice-rich deposit that records the passage of a ground-hugging ash flow (a 'pyroclastic flow') generated by the collapse of a volcanic eruption column1. Geologists study such deposits to reconstruct the parent eruptions and to predict the consequences of future eruptions. The 1,800-yr-old Taupo ignimbrite of New Zealand has been interpreted to represent en masse emplacement by an avalanche-like flow with a volumetric solids concentration in excess of 30% (ref. 2). The evidence for this is equivocal, however, and here we propose the alternative view that the deposit was emplaced by a relatively dilute and turbulent density current3. We present an isothermal, hydraulic model, the results of which, taken together with existing observations, suggest that the total flow rate of solids and gas was about 40km3s–1 for around 15 minutes. This intense flux resulted in a flow which had a near-vent solids concentration of 0.3% by volume, was about 1 km thick, and travelled outward from the vent with a typical speed of 200 ms–1. In view of the good agreement between predicted and observed radial trends in the Taupo deposit, we suggest that the origin of other ignimbrites with similar characteristics should be reconsidered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sparks, R. S. J., Self, S. & Walker, G. P. L. Geology 1, 115–118 (1973).

    Article  ADS  Google Scholar 

  2. Wilson, C. J. N. Phil. Trans. R. Soc. Lond. A 314, 229–310 (1985).

    Article  ADS  Google Scholar 

  3. Fisher, R. V. Am. J. Sci. 264, 287–298 (1966).

    Article  Google Scholar 

  4. Wilson, C. J. N. & Walker, G. P. L. Phil. Trans. R. Soc. Lond. A 314, 199–228 (1985).

    Article  ADS  Google Scholar 

  5. Walker, G. P. L., Heming, R. F. & Wilson, C. J. N. Nature 283, 286–287 (1980).

    Article  ADS  Google Scholar 

  6. Valetine, G. A. & Fisher, R. V. Science 259, 1130–1131 (1993).

    Article  ADS  Google Scholar 

  7. Simpson, J. E. Acta mechanica 63, 245–253 (1986).

    Article  Google Scholar 

  8. Hallworth, M. A., Phillips, J. C., Huppert, H. E. & Sparks, R. S. J. Nature 362, 829–831 (1993).

    Article  ADS  Google Scholar 

  9. Hallworth, M. A., Huppert, H. E., Phillips, J. C. & Sparks, R. S. J. J. Fluid Mech. 308, 289–311 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Branney, M. J. & Kokelaar, P. Bull. volcan. 54, 504–520 (1992).

    Article  ADS  Google Scholar 

  11. Druitt, T. H. J. Volcan. geotherm. Res. 65, 27–39 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Wilson, C. J. N. Bull. volcan. 50, 350–351 (1988).

    Article  ADS  Google Scholar 

  13. Batchelor, G. K. An Introduction to Fluid Mechanics (Cambridge Univ. Press, 1983).

    Google Scholar 

  14. Clift, R., Grace, J. R. & Weber, M. E. Bubbles, Drops, and Particles (Academic, London, 1978).

    Google Scholar 

  15. Valentine, G. A. Bull. volcan. 50, 352–355 (1988).

    Article  ADS  Google Scholar 

  16. Voight, B. Rockslides and Avalanches, Dev. Geotech. Eng. Vol. 14A (Elsevier, Amsterdam, 1978).

    Google Scholar 

  17. Pickering, K. T., Hiscott, R. N. & Hein, F. J. Deep Marine Facies (Unwin Hyman, London, 1989).

    Google Scholar 

  18. Kneller, B. C. & Branney, M. J. Sedimentology 42, 607–616 (1995).

    Article  ADS  Google Scholar 

  19. Dade, W. B. & Huppert, H. E. J. geophys. Res. 100, 18597–18609 (1995).

    Article  ADS  Google Scholar 

  20. Hopfinger, E. J. A Rev. Fluid Mech. 15, 47–76 (1983).

    Article  ADS  Google Scholar 

  21. Dade, W. B. & Huppert, H. E. Geology 22, 645–648 (1994).

    Article  ADS  Google Scholar 

  22. Valentine, G. A. Bull. volcan. 49, 616–630 (1987).

    Article  ADS  Google Scholar 

  23. Fisher, R. V. Geol. Soc. Am. Bull. 102, 1038–1054 (1990).

    Article  ADS  Google Scholar 

  24. Dunbar, N. W. & Kyle, P. R. J. Volcan. geotherm. Res. 49, 127–145 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Sparks, R. S. J., Wilson, L. & Hulme, G. J. geophys. Res. 83, 1727–1739 (1978).

    Article  ADS  Google Scholar 

  26. Anilkumar, A. V., Sparks, R. S. J. & Sturtevant, B. J. Volcan. geotherm. Res. 56, 145–160 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Fisher, R. V. J. Volcan. geotherm. Res. 56, 205–220 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Bonnecaze, R. T., Huppert, H. E. & Lister, J. R. J. Fluid Mech. 294, 93–121 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dade, W., Huppert, H. Emplacement of the Taupo ignimbrite by a dilute turbulent flow. Nature 381, 509–512 (1996). https://doi.org/10.1038/381509a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/381509a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing