Abstract
ALTHOUGH ocean circulation and the consequent exchange of heat and gases with the atmosphere exert a strong influence on climate, discussions of global circulation have previously been highly schematic1–3 (invoking laminar flow patterns that ignore the turbulent nature of the real flow), non-quantitative and/or based upon mutually inconsistent regional studies1–8. Here we present a dynamically and kinematically consistent estimate of the magnitude and structure of global ocean circulation and its associated heat fluxes, derived by integrating hydrographic velocity data over the rapid spatial variations that they show. We find no single overturning cell, but instead a complex and probably time-varying circulation pattern. The simplest interpretation suggests that there are two nearly independent cells: one connecting overturning in the Atlantic Ocean to other basins through the Southern Ocean, and the other connecting the Indian and Pacific basins through the Indonesian archipelago.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Broecker, W. S. Oceanography 4, 79–89 (1991).
Gordon, A. L. J. geophys. Res. 91, 5037–5046 (1986).
Schmitz, W. J. Jr. Rev. Geophys. 33, 151–173 (1995).
Boddem, J. & Schlitzer, R. J. geophys. Res. 100, 15821–15834 (1995).
Gordon, A. L., Weiss, R. F., Smethie, W. M. & Warner, M. J. J. geophys. Res. 97, 7223–7240 (1992).
Macdonald, A. M. J. geophys. Res. 98, 6851–6868 (1993).
Rintoul, S. R. J. geophys. Res. 96, 2675–2692 (1991).
Schmitz, W. J. Jr. & McCartney, M. S. Rev. Geophys. 31, 29–49 (1993).
Wunsch, C. Rev. Geophys. Space Phys. 16, 583–620 (1978).
Macdonald, A. M. thesis, Mass. Inst. of Technol./Woods Hole Oceanogr. Inst. Joint Program, Cambridge, MA (1995).
Friedrichs, M. A. M. & Hall, M. M. J. mar. Res. 51, 697–736 (1993).
Martel, F. & Wunsch, C. J. phys. Oceanogr. 23, 898–924 (1993).
Reid, J. L. Prog. Oceanogr. 33, 1–92 (1994).
Döös, K. J. geophys. Res. 100, 13499–13514 (1995).
Garzoli, S. L. & Gordon, A. L. J. geophys. Res. 101, 897–906 (1996).
Wijffels, S. E. thesis, Mass. Inst. of Technol./Woods Hole Oceanogr. Inst. Joint Program, Woods Hole, MA (1993).
Fieux, M. et al. Deep-Sea Res. 41, 1091–1130 (1994).
Meyers, G., Bailey, R. J. & Worby, A. P. Deep-Sea Res. 42, 1583–1607 (1995).
Bryden, H. L., Roemmich, D. H. & Church, J. A. Deep-Sea Res. 38, 297–324 (1991).
Georgi, D. T. & Toole, J. M. (suppl.) J. mar. Res. 40, 183–197 (1982).
Guiffrida, M. R. thesis, Texas A&M Univ. (1985).
Bunker, A. F. Mon. Weath. Rev. 116, 809–823 (1988).
Foreman, S. J., Alves, J. O. S. & Brooks, N. P. J., Tech. Rep. 104 (Meteorological Off., Bracknell, UK, 1994).
Baumgartner, A. & Reichel, E. in The World Water Balance (Elsevier Science, New York, 1975).
Schmitt, R. W., Bogden, P. S. & Dorman, C. E. J. phys. Oceanogr. 19, 1208–1221 (1989).
Fu, L. J. phys. Oceanogr. 11, 1171–1193 (1981).
Roemmich, D. & Wunsch, C. Deep-Sea Res. 32, 619–664 (1985).
Trenberth, K. E., Olson, J. G. & Large, W. G. NCAR Tech. Note 338+STR (National Center for Atmospheric Research, Boulder, Colorado, 1989).
Wunsch, C. The Ocean Circulation Inverse Problem (Cambridge Univ. Press, New York, 1996).
Wunsch, C., Hu, D. & Grant, B. J. phys. Oceanogr. 13, 725–753 (1983).
Talley, L. J. phys. Oceanogr. 14, 231–241 (1984).
Hastenrath, S. J. phys. Oceanogr. 12, 922–927 (1982).
Semtner, A. J. & Chervin, R. M. J. geophys. Res. 97, 5493–5550 (1992).
Hall, M. M. & Bryden, H. L. Deep-Sea Res. 29, 339–359 (1982).
Holfort, J. thesis, Ber. Inst. Meeresk. Kiel (1994).
Rintoul, S. R. & Wunsch, C. (suppl. 1A) Deep Sea Res. 38, 355–377 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Macdonald, A., Wunsch, C. An estimate of global ocean circulation and heat fluxes. Nature 382, 436–439 (1996). https://doi.org/10.1038/382436a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/382436a0
This article is cited by
-
Human-induced changes in the global meridional overturning circulation are emerging from the Southern Ocean
Communications Earth & Environment (2023)
-
Asymmetric responses of the meridional ocean heat transport to climate warming and cooling in CESM
Climate Dynamics (2022)
-
Acceleration of global mean ocean circulation under the climate warming
Science China Earth Sciences (2020)
-
Global meridional eddy heat transport inferred from Argo and altimetry observations
Scientific Reports (2019)
-
A “mirror layer” of temperature and salinity in the ocean
Climate Dynamics (2019)