Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An estimate of global ocean circulation and heat fluxes

Abstract

ALTHOUGH ocean circulation and the consequent exchange of heat and gases with the atmosphere exert a strong influence on climate, discussions of global circulation have previously been highly schematic1–3 (invoking laminar flow patterns that ignore the turbulent nature of the real flow), non-quantitative and/or based upon mutually inconsistent regional studies1–8. Here we present a dynamically and kinematically consistent estimate of the magnitude and structure of global ocean circulation and its associated heat fluxes, derived by integrating hydrographic velocity data over the rapid spatial variations that they show. We find no single overturning cell, but instead a complex and probably time-varying circulation pattern. The simplest interpretation suggests that there are two nearly independent cells: one connecting overturning in the Atlantic Ocean to other basins through the Southern Ocean, and the other connecting the Indian and Pacific basins through the Indonesian archipelago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broecker, W. S. Oceanography 4, 79–89 (1991).

    Article  Google Scholar 

  2. Gordon, A. L. J. geophys. Res. 91, 5037–5046 (1986).

    Article  ADS  Google Scholar 

  3. Schmitz, W. J. Jr. Rev. Geophys. 33, 151–173 (1995).

    Article  ADS  Google Scholar 

  4. Boddem, J. & Schlitzer, R. J. geophys. Res. 100, 15821–15834 (1995).

    Article  ADS  Google Scholar 

  5. Gordon, A. L., Weiss, R. F., Smethie, W. M. & Warner, M. J. J. geophys. Res. 97, 7223–7240 (1992).

    Article  ADS  Google Scholar 

  6. Macdonald, A. M. J. geophys. Res. 98, 6851–6868 (1993).

    Article  ADS  Google Scholar 

  7. Rintoul, S. R. J. geophys. Res. 96, 2675–2692 (1991).

    Article  ADS  Google Scholar 

  8. Schmitz, W. J. Jr. & McCartney, M. S. Rev. Geophys. 31, 29–49 (1993).

    Article  ADS  Google Scholar 

  9. Wunsch, C. Rev. Geophys. Space Phys. 16, 583–620 (1978).

    Article  ADS  Google Scholar 

  10. Macdonald, A. M. thesis, Mass. Inst. of Technol./Woods Hole Oceanogr. Inst. Joint Program, Cambridge, MA (1995).

  11. Friedrichs, M. A. M. & Hall, M. M. J. mar. Res. 51, 697–736 (1993).

    Article  Google Scholar 

  12. Martel, F. & Wunsch, C. J. phys. Oceanogr. 23, 898–924 (1993).

    Article  ADS  Google Scholar 

  13. Reid, J. L. Prog. Oceanogr. 33, 1–92 (1994).

    Article  ADS  Google Scholar 

  14. Döös, K. J. geophys. Res. 100, 13499–13514 (1995).

    Article  ADS  Google Scholar 

  15. Garzoli, S. L. & Gordon, A. L. J. geophys. Res. 101, 897–906 (1996).

    Article  ADS  Google Scholar 

  16. Wijffels, S. E. thesis, Mass. Inst. of Technol./Woods Hole Oceanogr. Inst. Joint Program, Woods Hole, MA (1993).

  17. Fieux, M. et al. Deep-Sea Res. 41, 1091–1130 (1994).

    Article  Google Scholar 

  18. Meyers, G., Bailey, R. J. & Worby, A. P. Deep-Sea Res. 42, 1583–1607 (1995).

    Article  Google Scholar 

  19. Bryden, H. L., Roemmich, D. H. & Church, J. A. Deep-Sea Res. 38, 297–324 (1991).

    Article  ADS  Google Scholar 

  20. Georgi, D. T. & Toole, J. M. (suppl.) J. mar. Res. 40, 183–197 (1982).

    Google Scholar 

  21. Guiffrida, M. R. thesis, Texas A&M Univ. (1985).

  22. Bunker, A. F. Mon. Weath. Rev. 116, 809–823 (1988).

    Article  ADS  Google Scholar 

  23. Foreman, S. J., Alves, J. O. S. & Brooks, N. P. J., Tech. Rep. 104 (Meteorological Off., Bracknell, UK, 1994).

  24. Baumgartner, A. & Reichel, E. in The World Water Balance (Elsevier Science, New York, 1975).

    Google Scholar 

  25. Schmitt, R. W., Bogden, P. S. & Dorman, C. E. J. phys. Oceanogr. 19, 1208–1221 (1989).

    Article  ADS  Google Scholar 

  26. Fu, L. J. phys. Oceanogr. 11, 1171–1193 (1981).

    Article  ADS  Google Scholar 

  27. Roemmich, D. & Wunsch, C. Deep-Sea Res. 32, 619–664 (1985).

    Article  ADS  Google Scholar 

  28. Trenberth, K. E., Olson, J. G. & Large, W. G. NCAR Tech. Note 338+STR (National Center for Atmospheric Research, Boulder, Colorado, 1989).

  29. Wunsch, C. The Ocean Circulation Inverse Problem (Cambridge Univ. Press, New York, 1996).

    Book  Google Scholar 

  30. Wunsch, C., Hu, D. & Grant, B. J. phys. Oceanogr. 13, 725–753 (1983).

    Article  ADS  Google Scholar 

  31. Talley, L. J. phys. Oceanogr. 14, 231–241 (1984).

    Article  ADS  Google Scholar 

  32. Hastenrath, S. J. phys. Oceanogr. 12, 922–927 (1982).

    Article  ADS  Google Scholar 

  33. Semtner, A. J. & Chervin, R. M. J. geophys. Res. 97, 5493–5550 (1992).

    Article  ADS  Google Scholar 

  34. Hall, M. M. & Bryden, H. L. Deep-Sea Res. 29, 339–359 (1982).

    Article  ADS  Google Scholar 

  35. Holfort, J. thesis, Ber. Inst. Meeresk. Kiel (1994).

  36. Rintoul, S. R. & Wunsch, C. (suppl. 1A) Deep Sea Res. 38, 355–377 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macdonald, A., Wunsch, C. An estimate of global ocean circulation and heat fluxes. Nature 382, 436–439 (1996). https://doi.org/10.1038/382436a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/382436a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing