Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Specific cytotoxic T cells eliminate cells producing neutralizing antibodies

An Addendum to this article was published on 27 November 2003

An Erratum to this article was published on 21 November 1996

Abstract

IN medically important infections with cytopathic viruses, neutralizing antibodies are generated within 6–14 days. In contrast, such protective antibodies appear late (50–150 days) after infection with immunodeficiency virus (HIV) and hepatitis B virus (HBV) in humans, or lymphocytic choriomeningitis virus (LCMV) in mice1–6. However, during these infections, non-neutralizing antibodies appear much earlier2,6,7. It has been proposed that T cells suppress antibody responses generally and against viruses in vitro6,8–10. Here we show that the suppression of neutralizing-antibody responses in LCMV infections in mice is due to selective infection of neutralizing-antibody-producing B cells by this non-cytopathic virus, and their subsequent destruction by virus-specific cytotoxic T cells. Such specific B-cell elimination that leads to a delay in neutralizing-antibody production could help to establish persistent virus infections by non-cytopathic viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moore, J. P., Cao, Y. Ho, D. D. & Koup, R. A. J. Virol. 68, 5142–5155 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alberti, A. et al. Lancet I, 1421–1424 (1988).

    Article  Google Scholar 

  3. Robert-Guroff, M., Brown, M. & Gallo, R. C. Nature 316, 72–74 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Weiss, R. A. et al. Nature 316, 69–71 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lehmann-Grube, F. Virol. Monogr. 10, 1–173 (1971).

    Google Scholar 

  6. Battegay, M. et al. J. Immunol. 151, 5408–5415 (1993).

    CAS  PubMed  Google Scholar 

  7. Koup, R. A. & Ho, D. D. Nature 370, 416 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Gershon, R. K. & Kondo, K. Immunology 18, 723–737 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dorf, M. E. & Benacerraf, B. Annu. Rev. Immunol. 2, 127–157 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Barnaba, V., Franco, A., Alberti, A., Benvenuto, R. & Balsano, F. Nature 345, 258–260 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Buchmeier, M. J., Welsh, R. M., Dutko, F. J. & Oldstone, M. B. A. Adv. Immunol. 30, 275–331 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Kägi, D. et al. Nature 369, 31–37 (1994).

    Article  ADS  PubMed  Google Scholar 

  13. Leist, T. P., Rüedi, E. & Zinkemagel, R. M. J. Exp. Med. 167, 1749–1754 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Odermatt, B., Eppler, M., Leist, T. P., Hengartner, H. & Zinkernagel, R. M. Proc. Natl Acad. Sci. USA 88, 8252–8256 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borrow, P., Evans, C. F. & Oldstone, M. B. A. J. Virol. 69, 1059–1070 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruns, M., Cihak, J., Müller, G. & Lehmann-Grube, F. Virology 130, 247–251 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Whitton, J. L. et al. J. Virol. 63, 4303–4310 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schulz, M. et al. Eur. J. Immunol. 19, 1657–1667 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Moskophidis, D., Cobbold, S. P., Waldmann, H. & Lehmann-Grube, F. J. Virol. 61, 1867–1874 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Staerz, U. D., Karasuyama, H. & Garner, A. M. Nature 329, 449–451 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Shinohara, N., Watanabe, M., Sachs, D. H. & Hozumi, N. Nature 336, 481–484 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Raychaudhuri, S. & Morrow, W. J. W. Immunol. Today 14, 344–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Hisatsune, T., Nishijima, K., Kohyama, M., Kato, H. & Kaminogawa, S. J. Immunol. 154, 88–96 (1995).

    CAS  PubMed  Google Scholar 

  24. Chesnut, R. W., Colon, S. M. & Grey, H. M. J. Immunol. 129, 2382–2388 (1982).

    CAS  PubMed  Google Scholar 

  25. Lanzavecchia, A. Annu. Rev. Immunol. 8, 773–793 (1995).

    Article  Google Scholar 

  26. Bachmann, M. F. et al. Eur. J. Immunol. 24, 2128–2236 (1994).

    Google Scholar 

  27. Mims, C. A. The Pathogenesis of Infectious Disease (Academic, London, 1987).

    Google Scholar 

  28. Gobet, R., Cerny, A., Rüedi, E., Hengartner, H. & Zinkernagel, R. M. Exp. Cell Biol. 56, 175–180 (1988).

    CAS  PubMed  Google Scholar 

  29. Henle, W. & Henle, G. Cancer Res. 41, 4222–4225 (1981).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planz, O., Seiler, P., Hengartner, H. et al. Specific cytotoxic T cells eliminate cells producing neutralizing antibodies. Nature 382, 726–729 (1996). https://doi.org/10.1038/382726a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/382726a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing