Abstract
SIMPLE cells within layer IV of the cat primary visual cortex are selective for lines of a specific orientation. It has been proposed that their receptive-field properties are established by the pattern of connections that they receive from the lateral geniculate nucleus (LGN) of the thalamus1–5. Thalamic inputs, however, represent only a small proportion of the synapses made onto simple cells6–8, and others have argued that corticocortical connections are likely to be important in shaping simple-cell response properties9–11. Here we describe a mechanism that might be involved in selectively strengthening the effect of thalamic inputs. We show that neighbouring geniculate neurons with overlapping receptive fields of the same type (on-centre or off-centre) often fire spikes that are synchronized to within 1 millisecond. Moreover, these neurons often project to a common cortical target neuron where synchronous spikes are more effective in evoking a postsynaptic response. We propose that precisely correlated firing within a group of geniculate neurons could serve to reinforce the thalamic input to cortical simple cells.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hubel, D. H. & Wiesel, T. N. J. Physiol. (Lond.) 160, 106–154 (1962).
Chapman, B., Zahs, K. R. & Stryker, M. P. J. Neurosci. 11, 1347–1358 (1991).
Tanaka, K. J. Neurophysiol. 49, 1303–1318 (1983).
Reid, R. C. & Alonso, J. M. Nature 378, 281–284 (1995).
Ferster, D., Chung, S. & Wheat, H. Nature 380, 249–252 (1996).
LeVay, S. & Gilbert, C. D. Brain Res. 113, 1–19 (1976).
Peters, A. & Payne, B. R. Cerebral Cortex 3, 69–78 (1993).
Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A. C. & Nelson, J. C. J. Comp. neurol. 341, 39–49 (1994).
Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Science 269, 981–985 (1995).
Somers, D. C., Nelson, S. B. & Sur, M. J. Neurosci. 15, 5448–5465 (1995).
Stratford, K. J., Tarczy-Hornoch, K., Martin, K. A. C., Bannister, N. J. & Jack, J. J. B. Nature 382, 258–261 (1996).
Hamos, J. E., Van Horn, S. C., Raczkowski, D. & Sherman, S. M. J. Comp. Neurol. 259, 165–192 (1987).
Cleland, B. G., Dubin, M. W. & Levick, W. R. Nature New. Biol. 231, 191–192 (1971).
Stevens, J. K. & Gerstein, G. L. J. Neurophysiol. 39, 239–256 (1976).
Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. Nature 369, 479–482 (1994).
Neuenschwander, S. & Singer, W. Nature 379, 728–732 (1996).
Rodieck, R. W. J. Neurophysiol. 30, 1043–1071 (1967).
Mastronarde, D. N. Trends Neurosci. 12, 75–80 (1989).
Meister, M., Lagnado, L. & Baylor, D. A. Science 270, 1207–1210 (1995).
Toyama, K., Kimura, M. & Tanaka, K. J. Neurophysiol. 46, 191–201 (1981).
Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. J. Neurosci. 6, 1160–1170 (1986).
Singer, W. & Gray, C. M. Annu. Rev. Neurosci. 18, 555–586 (1995).
Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1233–1258 (1987).
Sutter, E. Adv. Meth. Physiol. Systems Model 1, 303–315 (Univ. Southern California, 1987).
Meister, M., Wong, R. O. L., Baylor, D. A. & Shatz, C. J. Science 252, 939–943 (1991).
Dan, Y., Alonso, J. M., Usrey, W. M. & Reid, R. C. Soc. Neurosci. Abstr. 22, 1703 (1996).
Jagadeesh, B., Wheat, H. S. & Ferster, D. Science 262, 1901–1904 (1993).
Hirsch, J. A., Alonso, J. M. & Reid, R. C. Nature 378, 612–616 (1995).
Eckhorn, R. & Thomas, U. J. Neurosci. Methods. 49, 175–179 (1993).
Perkel, D. H., Gerstein, G. L. & Moore, G. P. Biophys. J. 7, 419–440 (1967).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Alonso, JM., Usrey, W. & Reid, R. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815–819 (1996). https://doi.org/10.1038/383815a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/383815a0
This article is cited by
-
High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons
Nature Communications (2022)
-
A theory of cortical map formation in the visual brain
Nature Communications (2022)
-
Correlations enhance the behavioral readout of neural population activity in association cortex
Nature Neuroscience (2021)
-
Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges
Scientific Reports (2019)
-
High-order coordination of cortical spiking activity modulates perceptual accuracy
Nature Neuroscience (2019)