Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Current-induced organization of vortex motion in type-II superconductors

Abstract

When a magnetic field is applied to a type-II superconductor, it penetrates the sample in localized tubes of magnetic flux associated with quantized current vortices; under appropriate conditions, these vortices form an ordered lattice. In a material free of crystal defects, transport currents force this lattice to move and dissipate energy, giving the material a non-zero resistance. The presence of defects, however, can inhibit vortex motion, or even pin vortices to specific locations. Thus, to engineer materials with improved properties it is important to understand the motion of a driven vortex lattice in the presence of different kinds of pinning defects1,2. Recent research has investigated vortex-lattice dynamics in the cases of weak, uniform pinning and strong but non-uniform pinning. Here we consider a different regime, in which the barriers to vortex motion at sample surfaces3 also play a crucial role. Our experiments on clean, detwinned YBa2Cu3O7–δ crystals at temperatures around 80–90K reveal an interplay between surface pinning and weak bulk pinning that leads to the formation of a defect superstructure in the vortex lattice. This current-induced organization is similar to phenomena observed in the dynamics of sliding charge-density waves, and represents a fundamentally new kind of vortex dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jensen, H. J., Brass, A. & Berlinsky, A. J. Phys. Rev. Lett. 60, 1676–1679 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Yaron, U. et al. Nature 376, 753–755 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Burlachkov, L. et al. Phys. Rev. B 50, 16770–16773 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Gagnon, R., Lupien, C. & Taillefer, L. Phys. Rev. B 50, 3458–3461 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Braun, D. W. et al. Phys. Rev. Lett. 76, 831–834 (1996).

    Article  ADS  CAS  Google Scholar 

  6. D'Anna, G. et al. Phys. Rev. Lett. 75, 3521–3524 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Sarkardei, M. R. & Jacobs, R. L. Phys. Rev. E 51, 1929–1932 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Tang, C., Wiesenfeld, K., Bak, P., Coppersmith, S. & Littlewood, P. Phys. Rev. Lett. 58, 1161–1164 (1987).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Coppersmith, S. N. & Littlewood, P. B. Phys. Rev. B 36, 311–317 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Fleming, R. M. & Grimes, C. C. Phys. Rev. Lett. 42, 1423–1426 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Dumas, J., Schlenker, C., Marus, J. & Buder, R. Phys. Rev. Lett. 50, 757–760 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Grüner, G. & Zettl, A. Phys. Rep. 119, 117–232 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordeev, S., de Groot, P., Oussena, M. et al. Current-induced organization of vortex motion in type-II superconductors. Nature 385, 324–326 (1997). https://doi.org/10.1038/385324a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/385324a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing