Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uniform elemental analysis of materials by sputtering and photoionization mass spectrometry

Abstract

Analysis of the elemental composition of surfaces commonly involves techniques in which atoms or ions are ablated from the material's surface and detected by mass spectrometry. Secondaryion mass spectrometry1,2 is widely used for detection with high sensitivity (down to a few parts per billion) but technical problems prevent it from being truly quantitative. Some of these problems are circumvented by nonresonant laser post-ionization of sputtered atoms followed by time-of-flight mass spectrometry (surface analysis by laser ionization: SALI)3–9. But when there are large differences in ionization probabilities amongst different elements in the material, the detection sensitivity can be non-uniform and accurate quantification remains out of reach. Here we report that highly uniform, quantitative and sensitive analysis of materials can be achieved using a high-energy (5-keV) ion beam for sputtering coupled with a very-high-intensity laser to induce multiphoton ionization of the sputtered atoms. We show uniform elemental sensitivity for several samples containing elements with very different ionization potentials, suggesting that this approach can now be regarded as quantitative for essentially any material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brundle, C. R., Evans, C. A. Jr & Wilson, S. Encyclopedia of Materials Characterization Ch. 10 (Butterworth-Heinemann, Boston, 1992).

    Google Scholar 

  2. Reuter, W. in Secondary Ion Mass Spectrometry SIMS V 94–102 (Springer, Berlin, 1986).

    Book  Google Scholar 

  3. Becker, C. H. & Gillen, K. T. Anal. Chem. 56, 1671–1674 (1984).

    Article  CAS  Google Scholar 

  4. Kaesdorf, S., Hartmann, M., Schröder, H. & Kompa, K. L. Int. J. Mass Spectrom. Ion Proc. 116, 219–247 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Wise, M. L., Emerson, A. B. & Downey, S. W. Anal. Chem. 67, 4033–4039 (1995).

    Article  CAS  Google Scholar 

  6. Wise, M. L., Downey, S. W. & Emerson, A. B. J. Mater. Res. 11, 321–324 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Schutze, M., Trappe, C., Tabellion, M. & Kurz, II. Fresenius J. Anal. Chem. 353, 575–577 (1995).

    Article  Google Scholar 

  8. Schnieders, A. et al. J. Vac. Sci. Technol. B 14, 2712–2723 (1996).

    Article  CAS  Google Scholar 

  9. Becker, C. H. & Hovis, J. S. J. Vac. Sci. Technol. A 12, 2352–2356 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Scrivener, E., Wilson, R. C. & Vickerman, J. C. Surf. Interface Anal. 23, 623–635 (1995).

    Article  CAS  Google Scholar 

  11. Gerhard, W. & Oechsner, H. Z. Phys. B 22, 41–48 (1975).

    CAS  Google Scholar 

  12. He, C. & Becker, C. H. Surf. Interface Anal. 24, 79–85 (1996).

    Article  CAS  Google Scholar 

  13. He, C. & Becker, C. H. Phys. Rev. A 52, 1300–1306 (1997).

    Article  ADS  Google Scholar 

  14. Ammosov, M. V. et al. in Advances in Atomic, Molecular, and Optical Physics Vol 29 (eds Bates, D. & Bederson, B.) 33–111 (Academic, Boston, 1992).

    Google Scholar 

  15. Charalambidis, D. et al. Phys. Rev. A 50, R2822–R2825 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Geltman, S. Phys. Rev. A 54, 2489–2491 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, C., Basler, J. & Becker, C. Uniform elemental analysis of materials by sputtering and photoionization mass spectrometry. Nature 385, 797–799 (1997). https://doi.org/10.1038/385797a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/385797a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing