Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. letters
  3. article
Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes
Download PDF
  • Letter
  • Published: 20 March 1997

Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes

  • A. Aggeli1,
  • M. Bell1,
  • N. Boden1,2,
  • J. N. Keen1,3,
  • P. F. Knowles1,3,
  • T. C. B. McLeish1,4,
  • M. Pitkeathly5 &
  • …
  • S. E. Radford1,3 

Nature volume 386, pages 259–262 (1997)Cite this article

  • 5801 Accesses

  • 842 Citations

  • 15 Altmetric

  • Metrics details

Abstract

Molecular self-assembly is becoming an increasingly popular route to new supramolecular structures and molecular materials1–7. The inspiration for such structures is commonly derived from self-assembling systems in biology. Here we show that a biological motif, the peptide β-sheet, can be exploited in designed oligopeptides that self-assemble into polymeric tapes and with potentially useful mechanical properties. We describe the construction of oligopeptides, rationally designed or based on segments of native proteins, that aggregate in suitable solvents into long, semi-flexible β-sheet tapes. These become entangled even at low volume fractions to form gels whose viscoelastic properties can be controlled by chemical (pH) or physical (shear) influences. We suggest that it should be possible to engineer a wide range of properties in these gels by appropriate choice of the peptide primary structure.

You have full access to this article via your institution.

Download PDF

Similar content being viewed by others

Control over the fibrillization yield by varying the oligomeric nucleation propensities of self-assembling peptides

Article Open access 11 November 2020

Nature-inspired protein ligation and its applications

Article 21 February 2023

Context dependence in assembly code for supramolecular peptide materials and systems

Article 13 March 2025

Article PDF

References

  1. Lehn, J.-M. Angew. Chem. Int. Edn Engl. 29, 1304–1319 (1990).

    Article  Google Scholar 

  2. Ball, P. Nature 371, 202–203 (1994).

    Article  ADS  Google Scholar 

  3. Lokey, R. S. & Iverson, B. L. Nature 375, 303–305 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Muller, A. & Beugholt, C. Nature 383, 296–297 (1996).

    Article  ADS  Google Scholar 

  5. Berg, R. H., Hvilsted, S. & Ramanujam, P. S. Nature 383, 505–508 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Choo, D. W., Schneider, J. P., Graciani, N. R. & Kelly, J. W. Macromolecules 29, 355–366 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Krejchi, M. T. et al. Science 265, 1427–1432 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Takumi, T. News Physiol. Sci. 8, 175–178 (1993).

    CAS  Google Scholar 

  9. Aggeli, A. et al. Biochemistry 35, 16213–16221 (1996).

    Article  CAS  Google Scholar 

  10. Blake, C. & Serpell, L. Structure, 4, 989–998 (1996).

    Article  CAS  Google Scholar 

  11. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).

    Google Scholar 

  12. Ferry, J. D. Viscoelastic Properties of Polymers 2nd edn (Wiley, New York, 1970).

    Google Scholar 

  13. Kamlet, M. J., Abboud, J. L. M., Abraham, M. H. & Taft, R. W. J. Org. Chem. 48, 2877–2887 (1983).

    Article  CAS  Google Scholar 

  14. Mayo, K. H., Ilyina, E. & Park, H. Protein Science 5, 1301–1315 (1996).

    Article  CAS  Google Scholar 

  15. Yang, J. J., Pitkeathly, M. & Radford, S. E. Biochemistry 33, 7345–7353 (1994).

    Article  CAS  Google Scholar 

  16. Minor, D. L. & Kim, P. Nature 380, 730–734 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Otzen, D. E. & Fersht, A. R. Biochemistry 34, 5718–5724 (1995).

    Article  CAS  Google Scholar 

  18. Smith, K. C. & Regan, L. Science 270, 980–982 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Zhang, S., Holmes, T., Lockshin, C. & Rich, A. Proc. Natl Acad. Sci. USA 90, 3334–3338 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Fasman, G. D. Prediction of Protein Structure and the Principles of Protein Conformation (Plenum, New York, 1989).

    Book  Google Scholar 

  21. Stott, K., Blackburn, J. M., Butler, P. J. G. & Perutz, M. Proc. Natl Acad. Sci. USA 92, 6509–6513 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Chirgadze, Yu. N., Shestopalov, B. V. & Venyaminov, S. Yu. Biopolymers 12, 1337–1351 (1973).

    Article  CAS  Google Scholar 

  23. Guo, H. & Karplus, M. J. Phys. Chem. 98, 7104–7105 (1994).

    Article  CAS  Google Scholar 

  24. Clausen, T. M. et al. J. Phys. Chem. 96, 474–484 (1992).

    Article  CAS  Google Scholar 

  25. Gay, N. J., Packman, L. C., Weldon, M. A. & Barna, J. C. J. FEBS Lett. 291, 87–91 (1991).

    Article  CAS  Google Scholar 

  26. Kirschner, D. A. et al. Proc. Natl Acad. Sci. USA 84, 6953–6957 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Geisler, N., Heimburg, T., Schuneman, J. & Weber, K. J. Struct. Biol. 110, 205–214 (1993).

    Article  CAS  Google Scholar 

  28. Hanabusa, K., Naka, Y., Koyama, T. & Shirai, H. J. Chem. Soc., Chem. Commun. 2683–2684 (1994).

  29. Stock, H. T., Turner, N. J. & McCague, R. J. Chem. Soc., Chem. Commun. 2063–2064 (1995).

  30. Vegners, R., Shestakova, I., Kalvinsh, I., Ezzell, R. M. & Janmey, P. A. J. Pept. Sci. 1, 371–378 (1995).

    Article  CAS  Google Scholar 

  31. Clark, A. H. & Ross-Murphy, S. B. Adv. Polym. Sci. 83, 57–192 (1987).

    Article  CAS  Google Scholar 

  32. Nyrkova, I. A., Semenov, A. M., Joanny, J. F. & Khokhlov, A. R. J. Phys.II 6, 1411–1428 (1996).

    CAS  Google Scholar 

  33. Surewicz, W. K. & Mantsch, H. H. Biochim. Biophys. Acta 952, 115–130 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Centre for Self-Organising Molecular Systems, The University of Leeds, Leeds, LS2 9JT, UK

    A. Aggeli, M. Bell, N. Boden, J. N. Keen, P. F. Knowles, T. C. B. McLeish & S. E. Radford

  2. School of Chemistry, The University of Leeds, Leeds, LS2 9JT, UK

    N. Boden

  3. Department of Biochemistry & Molecular Biology, The University of Leeds, Leeds, LS2 9JT, UK

    J. N. Keen, P. F. Knowles & S. E. Radford

  4. Department of Physics, The University of Leeds, Leeds, LS2 9JT, UK

    T. C. B. McLeish

  5. Oxford Centre for Molecular Sciences and New Chemistry Laboratory, The University of Oxford, South Parks Road, Oxford, OX1 3QT, UK

    M. Pitkeathly

Authors
  1. A. Aggeli
    View author publications

    Search author on:PubMed Google Scholar

  2. M. Bell
    View author publications

    Search author on:PubMed Google Scholar

  3. N. Boden
    View author publications

    Search author on:PubMed Google Scholar

  4. J. N. Keen
    View author publications

    Search author on:PubMed Google Scholar

  5. P. F. Knowles
    View author publications

    Search author on:PubMed Google Scholar

  6. T. C. B. McLeish
    View author publications

    Search author on:PubMed Google Scholar

  7. M. Pitkeathly
    View author publications

    Search author on:PubMed Google Scholar

  8. S. E. Radford
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggeli, A., Bell, M., Boden, N. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature 386, 259–262 (1997). https://doi.org/10.1038/386259a0

Download citation

  • Received: 28 October 1996

  • Accepted: 04 February 1997

  • Issue date: 20 March 1997

  • DOI: https://doi.org/10.1038/386259a0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials

    • Xiaorong Zhang
    • Yu Liu
    • Guanghua Zhao

    Nature Communications (2021)

  • Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials

    • Franziska Koch
    • Nina Meyer
    • Stephanie H. Mathes

    BMC Oral Health (2020)

  • Randomised clinical trial investigating self-assembling peptide P11-4 in the treatment of early caries

    • F. Bröseler
    • C. Tietmann
    • S. Jepsen

    Clinical Oral Investigations (2020)

  • Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages

    • Jiachen Zang
    • Hai Chen
    • Guanghua Zhao

    Nature Communications (2019)

  • Gelation Phenomenon During Crystallization of Cefpiramide Sodium

    • Yu Wei
    • Qiuxiang Yin
    • Yongfan Yang

    Transactions of Tianjin University (2019)

You have full access to this article via your institution.

Download PDF

Advertisement

Explore content

  • Research articles
  • News
  • Opinion
  • Research Analysis
  • Careers
  • Books & Culture
  • Podcasts
  • Videos
  • Current issue
  • Browse issues
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Staff
  • About the Editors
  • Journal Information
  • Our publishing models
  • Editorial Values Statement
  • Journal Metrics
  • Awards
  • Contact
  • Editorial policies
  • History of Nature
  • Send a news tip

Publish with us

  • For Authors
  • For Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature (Nature)

ISSN 1476-4687 (online)

ISSN 0028-0836 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing