Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

The nature of introns 4–6 suggests reduced lineage specificity in HLA-B alleles

Abstract

For most HLA-B alleles, coding sequences of the 3′ part of the genes still need to be determined, and sequences of the 3′ noncoding regions have yet to be studied systematically. In this study, we have determined the sequences of introns 4–6 in all HLA-B allelic groups, and computed nucleotide substitution rates and phylogenetic relationships. These sequences demonstrated an inconsistent pattern of intralineage specificity, intralineage diversity, and interlineage diversity that is best characterized by a patchwork pattern. Apart from phylogenetic studies about HLA diversity and diversification, the sequence data obtained in our study may prove valuable for haplotype-specific sequencing of the 3′ part of HLA-B and for the explanation of recombination events in newly described HLA-B alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Marsh SG, Bodmer JG, Albert ED et al. Nomenclature for factors of the HLA system, 2000. Tissue Antigens 2001; 57: 236–283.

    Article  CAS  Google Scholar 

  2. Robinson J, Malik A, Parham P, Bodmer JG, Marsh SG . IMGT/HLA database—a sequence database for the human major histocompatibility complex. Tissue Antigens 2000; 55: 280–287.

    Article  CAS  Google Scholar 

  3. Bjorkman PJ, Parham P . Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 1990; 59: 253–288.

    Article  CAS  Google Scholar 

  4. Parham P, Adams EJ, Arnett KL . The origins of HLA-A,B,C polymorphism. Immunol Rev 1995; 143: 141–180.

    Article  CAS  Google Scholar 

  5. McAdam SN, Boyson JE, Liu X et al. A uniquely high level of recombination at the HLA-B locus. Proc Natl Acad Sci USA 1994; 91: 5893–5897.

    Article  CAS  Google Scholar 

  6. Inutsuka H . Differences in gene conversion rates among exons between HLA-A and HLA-B loci. Kurume Med J 1999; 46: 79–82.

    Article  CAS  Google Scholar 

  7. Hughes AL, Hughes MK, Watkins DI . Contrasting roles of interallelic recombination at the HLA-A and HLA-B loci. Genetics 1993; 133: 669–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. McKenzie LM, Pecon-Slattery J, Carrington M, O'Brien SJ . Taxonomic hierarchy of HLA class I allele sequences. Genes Immun 1999; 1: 120–129.

    Article  CAS  Google Scholar 

  9. Gomez-Casado E, Vargas-Alarcon G, Martinez-Laso J et al. Evolutionary relationships between HLA-B alleles as indicated by an analysis of intron sequences. Tissue Antigens 1999; 53: 153–160.

    Article  CAS  Google Scholar 

  10. Meyer D, Blasczyk R . The effect of mutation, recombination and selection on HLA non-coding sequences. In: Kasahara, M. (ed). Major Histocompatibility Complex. Evolution, Structure and Function. Springer: Tokyo, 2000, pp 398–411.

    Chapter  Google Scholar 

  11. Summers CW, Hampson VJ, Taylor GM . HLA class I non-coding nucleotide sequences, 1992. Eur J Immunogenet 1993; 20: 201–240.

    Article  CAS  Google Scholar 

  12. Crew MD . Compilation of distinct HLA-A, -B and -C transmembrane and cytoplasmic domain-encoding sequences. Eur J Immunogenet 1997; 24: 443–449.

    Article  CAS  Google Scholar 

  13. Ways JP, Coppin HL, Parham P . The complete primary structure of HLA-Bw58. J Biol Chem 1985; 260: 11924–11933.

    CAS  PubMed  Google Scholar 

  14. Kato N, Ward F, Kano K, Takiguchi M . Conservation of genes encoding HLA-B5 and B35 cross-reactive group antigens in various races. Hum Immunol 1992; 35: 253–255.

    Article  CAS  Google Scholar 

  15. Sekimata M, Hiraiwa M, Andrien M et al. Allodeterminants and evolution of a novel HLA-B5 CREG antigen, HLA-B SNA. J Immunol 1990; 144: 3228–3233.

    CAS  PubMed  Google Scholar 

  16. Dewar PJ, Coates EW, Murray S . Subdivision of the antigen HLA-B14. Tissue Antigens 1977; 10: 345–347.

    Article  CAS  Google Scholar 

  17. Domena JD, Azumi K, Bias WB, Parham P . B*1401 encodes the B64 antigen: the B64 and B65 splits of B14 differ only at residue 11, a buried amino acid. Tissue Antigens 1993; 41: 110–111.

    Article  CAS  Google Scholar 

  18. Domena JD, Little AM, Madrigal AJ et al. Structural heterogeneity in HLA-B70, a high-frequency antigen of black populations. Tissue Antigens 1993; 42: 509–517.

    Article  CAS  Google Scholar 

  19. Hildebrand WH, Domena JD, Shen SY et al. HLA-B15: a widespread and diverse family of HLA-B alleles. Tissue Antigens 1994; 43: 209–218.

    Article  CAS  Google Scholar 

  20. Little AM, Parham P . The HLA-Bw75 subtype of B15: molecular characterization and comparison with crossreacting antigens. Tissue Antigens 1991; 38: 186–190.

    Article  CAS  Google Scholar 

  21. Bodmer JG, Marsh SG, Albert ED et al. Nomenclature for factors of the HLA system, 1996. Tissue Antigens 1997; 49: 297–321.

    Article  CAS  Google Scholar 

  22. Zemmour J, Gumperz JE, Hildebrand WH et al. The molecular basis for reactivity of anti-Cw1 and anti-Cw3 alloantisera with HLA-B46 haplotypes. Tissue Antigens 1992; 39: 249–257.

    Article  CAS  Google Scholar 

  23. Schreuder I, D'Amaro J, Sandberg L, van Rood JJ . Partition of the antigen W16 into two subtypic determinants. Tissue Antigens 1975; 5: 142–144.

    Article  Google Scholar 

  24. Little AM, Domena JD, Hildebrand WH et al. HLA-B67: a member of the HLA-B16 family that expresses the ME1 epitope. Tissue Antigens 1994; 43: 38–43.

    Article  CAS  Google Scholar 

  25. Hildebrand WH, Madrigal JA, Belich MP et al. Serologic cross-reactivities poorly reflect allelic relationships in the HLA-B12 and HLA-B21 groups. Dominant epitopes of the alpha 2 helix. J Immunol 1992; 149: 3563–3568.

    CAS  PubMed  Google Scholar 

  26. Hildebrand WH, Madrigal JA, Little AM, Parham P . HLA-Bw22: a family of molecules with identity to HLA-B7 in the alpha 1-helix. J Immunol 1992; 148: 1155–1162.

    CAS  PubMed  Google Scholar 

  27. Hildebrand WH, Domena JD, Parham P . Primary structure shows HLA-B59 to be a hybrid of HLA-B55 and HLA-B51, and not a subtype of HLA-B8. Tissue Antigens 1993; 41: 190–195.

    Article  CAS  Google Scholar 

  28. Geer L, Terasaki PI, Gjertson DW . Gene frequencies and world maps of their distributions. In: Gjertson DW, Terasaki, PI (eds). HLA 1998. American Society for Histocompatibility and Immunogenetics: Lenexa, 1998, pp 327–363.

    Google Scholar 

  29. Hammond MG, Appadoo B, Brain P . HL-A antigens and antibodies in South African Indians. Tissue Antigens 1972; 2: 389–396.

    Article  CAS  Google Scholar 

  30. Kawaguchi G, Kato N, Kashiwase K et al. Structural analysis of HLA-B40 epitopes. Hum Immunol 1993; 36: 193–198.

    Article  CAS  Google Scholar 

  31. Voorter CE, van der Vlies SA, van den Berg-Loonen EM . Sequence-based typing of HLA-B: the B7 cross-reacting group. Tissue Antigens 2000; 56: 356–362.

    Article  CAS  Google Scholar 

  32. Ellexson ME, Zhang G, Stewart D et al. Nucleotide sequence analysis of HLA-B*1523 and B*8101. Dominant alpha-helical motifs produce complex serologic recognition patterns for the HLA-B‘DT’ and HLA-B‘NM5’ antigens. Hum Immunol 1995; 44: 103–110.

    Article  CAS  Google Scholar 

  33. Vilches C, Sanz L, de Pablo R et al. Molecular characterization of the new alleles HLA-B*8101 and B*4407. Tissue Antigens 1996; 47: 139–142.

    Article  CAS  Google Scholar 

  34. Duquesnoy RJ, White LT, Fierst JW et al. Multiscreen serum analysis of highly sensitized renal dialysis patients for antibodies toward public and private class I HLA determinants. Implications for computer-predicted acceptable and unacceptable donor mismatches in kidney transplantation. Transplantation 1990; 50: 427–437.

    Article  CAS  Google Scholar 

  35. Darke C . A serological study of the HLA-B17 cross-reactive group. Tissue Antigens 1984; 23: 141–150.

    Article  CAS  Google Scholar 

  36. Parham P, Arnett KL, Adams EJ et al. The HLA-B73 antigen has a most unusual structure that defines a second lineage of HLA-B alleles. Tissue Antigens 1994; 43: 302–313.

    Article  CAS  Google Scholar 

  37. Högstrand K, Böhme J . Gene conversion of major histocompatibility complex genes is associated with CpG-rich regions. Immunogenetics 1999; 49: 446–455.

    Article  Google Scholar 

  38. Elsner HA, Rozas J, Blasczyk R . The nature of introns 4–7 largely reflects the lineage specificity of HLA-A alleles. Immunogenetics 2002; 54: 447–462.

    Article  CAS  Google Scholar 

  39. Kotsch K, Wehling J, Kohler S, Blasczyk R . Sequencing of HLA class I genes based on the conserved diversity of the noncoding regions: sequencing-based typing of the HLA-A gene. Tissue Antigens 1997; 50: 178–191.

    Article  CAS  Google Scholar 

  40. Petersdorf EW, Hansen JA . A comprehensive approach for typing the alleles of the HLA-B locus by automated sequencing. Tissue Antigens 1995; 46: 73–85.

    Article  CAS  Google Scholar 

  41. Invitrogen. Invitrogen Instruction Manual TOPO TA Cloning, Version L, Leek, The Netherlands, 2001.

  42. Thompson JD, Higgins DG, Gibson TJ . CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680.

    Article  CAS  Google Scholar 

  43. Hall TA . BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95.

    CAS  Google Scholar 

  44. Saitou N, Nei M . The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406–425.

    CAS  Google Scholar 

  45. Van de Peer Y, De Wachter R . TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 1994; 10: 569–570.

    CAS  PubMed  Google Scholar 

  46. Jukes TH, Cantor CR . Evolution of protein molecules. In: Munro HN (ed). Mammalian Protein Metabolism. Academic Press: New York, 1969, pp 21–132.

    Chapter  Google Scholar 

  47. Rozas J, Rozas R . DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 1999; 15: 174–175.

    Article  CAS  Google Scholar 

  48. Cereb N, Kong Y, Lee S, Maye P, Yang SY . Nucleotide sequences of MHC class I introns 1, 2 and 3 in humans and intron 2 in nonhuman primates. Tissue Antigens 1996; 48: 235–236.

    Article  CAS  Google Scholar 

  49. Cereb N, Kong Y, Lee S, Maye P, Yang SY . Erratum. Tissue Antigens 1996; 48: 235–236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kerstin Müller and Sandra Reuter for excellent technical assistance. Part of this work will appear in the doctoral thesis of KB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Blasczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsner, HA., Baengeroth, K. & Blasczyk, R. The nature of introns 4–6 suggests reduced lineage specificity in HLA-B alleles. Genes Immun 4, 391–401 (2003). https://doi.org/10.1038/sj.gene.6363981

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gene.6363981

Keywords

Search

Quick links