Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Simultaneous analysis of interleukin-10 gene microsatellites and single-nucleotide polymorphisms in parallel with tumour necrosis factor and interferon-gamma short tandem repeats by fluorescence-based polymerase chain reaction

Abstract

Different cytokine genotypes exist in the population, for example, as a result of selective pressure of infectious diseases. It may be that specific cytokine genotypes that are beneficial by creating a ‘proinflammatory’ phenotype predispose to severe inflammatory disease with worse clinical outcome. There is individual variation in the production of certain cytokines in relation to their genotypes. IL-10, IFN-γ and TNF-α are key components in the regulation of immune responses and the balance of their expression levels is predictive in certain diseases. To describe cytokine genotypes, a one-tube PCR reaction was developed to analyse simultaneously DNA sequence variations of cytokine genes IL-10, IFN-γ, and TNF. This multiplex PCR approach was used to provide genotypic data for two geographically independent donor groups from Germany and Gabon. Significant differences were obtained for the majority of sequence variations comparing both populations. However, the SNPs within the 5′-flanking region of the IL-10 gene at position −1087 and −6208 are comparable in their genic and genotypic behaviour. Comparing allelic and genotypic disequilibrium between pairs of loci revealed different association patterns for both populations according to the geographical polymorphism. This assay may improve immunogenetic studies in disease, characterized by disbalanced IL-10, IFN-γ and TNF-α expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lalani I, Bhol K, Ahmed A . Interleukin-10: biology, role in inflammation and autoimmunity. Ann Allergy, Asthma Immunol 1997; 79: 469–474.

    Article  CAS  Google Scholar 

  2. D'Alfonso S et al. Systemic lupus erythematosus candidate genes in the Italian population: evidence for a significant association with interleukin-10. Arthritis-Rheum 2000; 43: 120–128.

    Article  CAS  PubMed  Google Scholar 

  3. Dean GS et al. Cytokines and systemic lupus erythematosus. Ann Rheum Dis 2000; 59: 243–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eskdale J et al. Association between polymorphisms at the human IL-10 locus and systemic lupus erythematosus. Tissue Antigens 1997; 49: 635–639.

    Article  CAS  PubMed  Google Scholar 

  5. Westendorp. Genetic influence on cytokine production in meningococcal disease. Lancet 1997; 349: 1912–1913.

    Article  CAS  Google Scholar 

  6. Anaya JM et al. IL-10 microsatellite polymorphisms in primary Sjogren's syndrome (pSS). Arthritis Rheum 1999; 42: S137–S137.

    Article  Google Scholar 

  7. Cavet J et al. Recipient TNF and IL-10 gene polymorphisms associate with early mortality and acute graft -versus-host disease severity in HLA-matched sibling bone marrow transplantation. Blood 1999; 94: 3941–3946.

    CAS  PubMed  Google Scholar 

  8. Crawley E et al. Polymorphic haplotypes of the IL-10 5′- flanking region determine variable IL-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 1999; 42: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  9. Eskdale J et al. Interleukin-10 microsatellite polymorphisms and IL-10 locus alleles in rheumatoid arthritis susceptibility. Lancet 1998; 352: 1282–1283.

    Article  CAS  PubMed  Google Scholar 

  10. Eskdale J, Stuart RC and Gallagher G . Interleukin-10 polymorphisms in gastro-oesophageal cancers. Gastroenterology 2000; 118: A42–A42.

    Article  Google Scholar 

  11. Hajeer A et al. IL-10 gene promoter polymorphisms in rheumatoid arthritis. Scand J Rheumatol 1998; 27: 142–145.

    Article  CAS  PubMed  Google Scholar 

  12. Huang DR et al. Markers in the promoter region of interleukin-10 (IL-10) gene in myasthenia gravis: implications of diverse effects of IL-10 in the pathogenesis of the disease. J Neuroimmunol 1999; 94: 82–87.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenwasser LJ, Borish L . Genetics of atopy and asthma: the rationale behind promoter-based candidate gene studies (IL-4 and IL-10). Am J Resp Crit Care Med 1997; 156: S152–S155.

    Article  CAS  PubMed  Google Scholar 

  14. Tagore A et al. Interleukin-10 (IL-10) genotypes in inflammatory bowel disease. Tissue-Antigens 1999; 54: 386–390.

    Article  CAS  PubMed  Google Scholar 

  15. Helminen M, Lahdenpohja N, Hurme M . Polymorphism of the interleukin-10 gene is associated with susceptibility to Epstein–Barr virus infection. J Infect Dis 1999; 180: 496–499.

    Article  CAS  PubMed  Google Scholar 

  16. Helminen M-E, Kilpinen S, Virta M, Hurme M . Susceptibility to primary Epstein–Barr virus infection is associated with interleukin-10 gene promoter polymorphism. J Infect Dis 2001; 184: 777–780.

    Article  CAS  PubMed  Google Scholar 

  17. Bidwell J et al. Cytokine gene polymorphism in human disease: on-line databases, Supplement 1. Genes Immun 2001; 2: 61–70.

    Article  CAS  PubMed  Google Scholar 

  18. Middleton PG et al. Cytokine gene polymorphisms associating with severe acute graft-versus-host disease in HLA-identical sibling transplants. Blood 1998; 92: 3943–3948.

    CAS  PubMed  Google Scholar 

  19. Mok C, Lanchbury J, Chan D, Lau C . Interleukin-10 promoter polymorphisms in southern Chinese patients with systemic lupus erythematosus. Arthritis Rheum 1998; 41: 1090–1095.

    Article  CAS  PubMed  Google Scholar 

  20. Emilie D, Couderc J, Llorente L, Galanaud P . Interleukin 10: a key cytokine in systemic lupus erythematosus. Pathol Biol 1998; 46: 583–585.

    CAS  PubMed  Google Scholar 

  21. Baiocchi RA et al. Lymphomagenesis in the SCID-hu mouse involves abundant production of human interleukin-10. Blood 1995; 85: 1063–1074.

    CAS  PubMed  Google Scholar 

  22. Blay JY et al. Serum interleukin-10 in non-Hodgkin's lymphoma: a prognostic factor. Blood 1993; 82: 2169–2174.

    CAS  PubMed  Google Scholar 

  23. Burdin N, Peronne C, Banchereau J, Rousset F . Epstein–Barr virus transformation induces B lymphocytes to produce human interleukin 10. J Exp Med 1993; 177: 295–304.

    Article  CAS  PubMed  Google Scholar 

  24. Beatty PR, Krams SM, Martinez OM . Involvement of IL-10 in the autonomous growth of EBV-transformed B cell lines. J Immunol 1997; 158: 4045–4051.

    CAS  PubMed  Google Scholar 

  25. Klein SC, Kube D, Abts H, Diehl V, Tesch H . Promotion of IL8, IL10, TNFalpha and TNFbeta production by EBV infection. Leukemia Res 1996; 20: 633–636.

    Article  CAS  Google Scholar 

  26. Kurtzhals JAL et al. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 1998; 351: 1768–1772.

    Article  CAS  PubMed  Google Scholar 

  27. Masood R et al. Interleukin-10 is an autocrine growth factor for acquired immunodeficiency syndrome-related B-cell lymphoma. Blood 1995; 85: 3423–3430.

    CAS  PubMed  Google Scholar 

  28. Mordmuller BG et al. Tumor necrosis factor in Plasmodium falciparum malaria: high plasma level is associated with fever, but high production capacity is associated with rapid fever clearance. Eur Cytokine Netw 1997; 8: 29–35.

    CAS  PubMed  Google Scholar 

  29. Luty AJ et al. Antibody responses to Plasmodium falciparum: evolution according to the severity of a prior clinical episode and association with subsequent reinfection. Am J Trop Med Hyg 2000; 62: 566–572.

    Article  CAS  PubMed  Google Scholar 

  30. Winkler S et al. Reciprocal regulation of Th1- and Th2-cytokine-producing T cells during clearance of parasitemia in Plasmodium falciparum malaria. Infect Immun 1998; 66: 6040–6044.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. van den Biggelaar A et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet 2000; 356: 1723–1727.

    Article  CAS  PubMed  Google Scholar 

  32. Shin H et al. Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc Natl Acad Sci USA 2000; 97: 14467–14472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding L et al. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the upregulation of B7 expression. J Immunol 1993; 151: 1224–1234.

    CAS  PubMed  Google Scholar 

  34. Koppelman B, Neefjes JJ, De VJ, Malefyt R . Interleukin-10 down-regulates MHC class II alphabeta peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity 1997; 7: 861–871.

    Article  CAS  PubMed  Google Scholar 

  35. May J et al. Plasma IL-10:TNF ratio is associated with TNF promoter variants and predicts malarial complications. J Infect Dis 2000; 182: 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  36. Eskdale J et al. Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci USA 1998; 95: 9465–9470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eskdale J, Keijsers V, Huizinga T, Gallagher G . Microsatellite alleles and single nucleotide polymorphisms (SNP) combine to form four major haplotype families at the human interleukin-10 (IL-10) locus. Genes Immun 1999; 1: 151–155.

    Article  CAS  PubMed  Google Scholar 

  38. Turner DM et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997; 24: 1–8.

    Article  CAS  PubMed  Google Scholar 

  39. Gibson AW et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol 2001; 166: 3915–3922.

    Article  CAS  PubMed  Google Scholar 

  40. Pravica V et al. In vitro production of IFN-gamma correlates with CA-repeat polymorphims in the human IFN-gamma gene. Eur J Immunogenet 1999; 26: 1–3.

    Article  CAS  PubMed  Google Scholar 

  41. Knight JC et al. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet 1999; 22: 145–150.

    Article  CAS  PubMed  Google Scholar 

  42. Wilson A et al. Effect of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 1997; 94: 3195–3199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perlin M, Lancia G, Ng S . Toward fully automated genotyping: genotyping microsatellite markers by deconvolution. A. J Hum Genet 1995; 57: 1199–1210.

    CAS  Google Scholar 

  44. Walsh P, Fildes N, Reynolds R . Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucl Acid Res 1996; 24: 2807–2812.

    Article  CAS  Google Scholar 

  45. Kube D et al. Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 1995; 7: 1–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kube D, Laser H, von Knethen A, Tesch H . The AT-rich region between −54 to −66 is important for the promoter activity of interleukin-10 in Epstein–Barr virus positive Burkitt's lymphoma cells. Genes Immun 1999; 1: 105–114.

    Article  CAS  PubMed  Google Scholar 

  47. Platzer C et al. Cyclic adenosine monophosphate-responsive elements are involved in the transcriptional activation of the human IL-10 gene in monocytic cells. Eur J Immunol 1999; 10: 3098–3104.

    Article  Google Scholar 

  48. Benkhart et al. Role of Stat3 in lipopolysaccharide-induced IL-10 gene expression. J Immunol 2000; 165: 1612–1617.

    Article  CAS  PubMed  Google Scholar 

  49. Brightbill H, Plevy S, Modlin R, Smale S . A prominent role for SP1 during LPS induction of the IL-10 promoter in macrophages. J Immunol 2000; 164: 1940–1951.

    Article  CAS  PubMed  Google Scholar 

  50. Wei M et al. The p38 pathway regulates the human IL-10 promoter via the activation of SP1 transcription factor in LPS stimulated human macrophages. J Biol Chem 2001; M011157200.

  51. D'Alfonso S et al. New polymorphisms in the IL-10 promoter region. Genes Immun 2000; 1: 231–233.

    Article  CAS  PubMed  Google Scholar 

  52. Eskdale J, Gallagher G . A polymorphic dinucleotide repeat in the human IL-10 promoter. Immunogenetics 1995; 42: 444–445.

    Article  CAS  PubMed  Google Scholar 

  53. Eskdale J, Kube D, Gallagher G . A second polymorphic dinucleotide repeat in the 5′ flanking region of the human IL10 gene. Immunogenetics 1996; 45: 82–83.

    Article  CAS  PubMed  Google Scholar 

  54. Eskdale J, Kube D, Tesch H, Gallagher G . Mapping of the human IL10 gene and further characterization of the 5' flanking sequence. Immunogenetics 1997; 46: 120–128.

    Article  CAS  PubMed  Google Scholar 

  55. Eskdale J, Kube D, Peat J, Gallagher G . The human interleukin-10 (IL-10) locus: mapping of novel structural homologues of IL-10 reveals a cluster of four IL-10 family members within approximately 140kb on chromosome 1Q31-32. Arthritis Rheum 2000; 43: S53–S53.

    Google Scholar 

  56. Kube D et al. Structural characterisation of the distal 5′ flanking region of the human interleukin-10 gene. Genes Immun 2001; 2: 181–190.

    Article  CAS  PubMed  Google Scholar 

  57. Kwiatkowski D . Science, medicine, and the future—susceptibility to infection. Br Med J 2000; 321: 1061–1065.

    Article  CAS  Google Scholar 

  58. Gallagher G et al. Polymorphisms in the TNF gene cluster and MHC serotypes in the West of Scotland. Immunogenetics 1997; 45: 188–194.

    Article  CAS  PubMed  Google Scholar 

  59. Luty A et al. Parasite antigen-specific interleukin-10 and antibody responses predict accelerated parasite clearance in Plasmodium falciparum malaria. Eur Cytokine Netw 1998; 9: 639–646.

    CAS  PubMed  Google Scholar 

  60. Kube D et al. Semiautomated and simultaneous analysis of the interleukin-10 gene microsatellites IL-10G and IL-10R by fluorescence-based polymerase chain reaction reveals significant differences in allele distributions between Caucasians (Germany) and Africans (Gabon). Eur Cytokine Netw 2001; 12: 537–544.

    CAS  PubMed  Google Scholar 

  61. Raymond M, Rousset F . A population genetics software for exact tests and ecumenicism. J Hered 1995; 86: 248–249.

    Article  Google Scholar 

  62. Koss K, Fanning GC, Welsh KI, Jewell DP . Interleukin-10 gene promoter polymorphism in English and Polish healthy controls. Polymerase chain reaction haplotyping using 3′ mismatches in forward and reverse primers. Genes Immun 2000; 1: 321–324.

    Article  CAS  PubMed  Google Scholar 

  63. Asderakis A et al. Association of polymorphisms in the human interferon-gamma and interleukin-10 gene with acute and chronic kidney transplant outcome: the cytokine effect on transplantation. Transplantation 2001; 71: 674–677.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P Dobrowolski and G Gallagher for helpful discussions, and M Stecki and H Esmer for technical assistance. We are grateful to the Deutsche Forschungsgemeinschaft (DFG 954/5-1), the Bundesministerium für Forschung und Technologie (01KS 9502), the Tübingen fortüne Programm (658-1-0, 805-0-0), the EU INCO DEV (contract IC18CT980370) program and the Wilhelm-Sander-Stiftung for their generous support.

Author information

Authors and Affiliations

Corresponding author

Correspondence to D Kube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kube, D., Mörmann, M., Tomiuk, J. et al. Simultaneous analysis of interleukin-10 gene microsatellites and single-nucleotide polymorphisms in parallel with tumour necrosis factor and interferon-gamma short tandem repeats by fluorescence-based polymerase chain reaction. Genes Immun 4, 459–468 (2003). https://doi.org/10.1038/sj.gene.6364003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gene.6364003

Keywords

This article is cited by

Search

Quick links