Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

LymphTF-DB: a database of transcription factors involved in lymphocyte development

Abstract

B and T cells develop following a similar early stepwise progression to later stages where multiple developmental options are available. These developmental regimes necessitate differential gene expression regulated by a large number of transcription factors (TFs). The resultant burgeoning amount of information has opened a knowledge gap between TF activities during lymphocyte development and a researcher's experiments. We have created the LymphTF database (DB) to fill this gap. This DB holds interactions between individual TFs and their specific targets at a given developmental time. By storing such interactions as a function of developmental progression, we hope to advance the elucidation of regulatory networks that guide lymphocyte development. Besides queries for TF-target gene interactions in developmental stages, the DB provides a graphical representation of downloadable target gene regulatory sequences with locations of the transcriptional start sites and TF-binding sites. The LymphTF-DB can be accessed freely on the web at http://www.iupui.edu/~tfinterx/.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hardy RR . B-cell commitment: deciding on the players. Curr Opin in Immunol 2003; 15: 158–165.

    Article  CAS  Google Scholar 

  2. Matthias P, Rolink AG . Transcriptional networks in developing and mature B cells. Nat Rev Immunol 2005; 5: 497–508.

    Article  CAS  Google Scholar 

  3. Jimenez JL, Mitchell MP, Sgouros JG . Microarray analysis of orthologous genes: conservation of the translational machinery across species at the sequence and expression level. Genome Biol 2003; 4: R4.

    Article  Google Scholar 

  4. Mata J, Bahler J . Correlations between gene expression and gene conservation in fission yeast. Genome Res 2003; 13: 2686–2690.

    Article  CAS  Google Scholar 

  5. Kuo CT, Leiden JM . Transcriptional regulation of T lymphocyte development and function. Annu Rev Immunol 1999; 17: 117–149.

    Article  Google Scholar 

  6. Bartholdy B, Matthias P . Transcriptional control of B cell development and function. Gene 2004; 327: 1–23.

    Article  CAS  Google Scholar 

  7. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM . BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000; 13: 199–212.

    Article  CAS  Google Scholar 

  8. Tabrizifard S, Olaru A, Plotkin J, Fallahi-Sichani M, Livak F, Petrie HT . Analysis of transcription factor expression during discrete stages of postnatal thymocyte differentiation. J Immunol 2004; 173: 1094–1102.

    Article  CAS  Google Scholar 

  9. Georgopoulos K . Haematopoietic cell-fate decisions, chromatin regulation and Ikaros. Nat Rev Immunol 2002; 2: 162–174.

    Article  CAS  Google Scholar 

  10. Trinh LA, Ferrini R, Cobb BS et al. Downregulation of TDT transcription in CD4+ CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev 2001; 15: 1817–1832.

    Article  CAS  Google Scholar 

  11. Busslinger M . Transcriptional control of early B cell development. Annu Rev Immunol 2004; 22: 55–79.

    Article  CAS  Google Scholar 

  12. Beinke S, Ley SC . Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 2004; 382 (Part 2): 393–409.

    Article  CAS  Google Scholar 

  13. Pohar TT, Sun H, Davuluri RV . HemoPDB: hematopoiesis promoter database, an information resource of transcriptional regulation in blood cell development. Nucleic Acids Res 2004; 32: D89–D90.

    Article  Google Scholar 

  14. Giudicelli V, Chaume D, Lefranc MP . IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res 2005; 33: D256–D261.

    Article  CAS  Google Scholar 

  15. Singh H, Medina KL, Pongubala JMR . Contingent gene regulatory networks and B cell fate specification. Proc Natl Acad Sci 2005; 102: 4949–4953.

    Article  CAS  Google Scholar 

  16. Anderson MK, Hernandez-Hoyos G, Dionne CJ, Arias AM, Chen D, Rothenberg EV . Definition of regulatory network elements for T cell development by perturbation analysis with PU.1 and GATA-3. Dev Biol 2002; 246: 103–121.

    Article  CAS  Google Scholar 

  17. Tunyaplin C, Shaffer AL, Angelin-Duclos CD, Yu X, Staudt LM, Calame KL . Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol 2004; 173: 1158–1165.

    Article  CAS  Google Scholar 

  18. Warren LA, Rothenberg EV . Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors. Curr Opin Immunol 2003; 15: 166–175.

    Article  CAS  Google Scholar 

  19. Maglott D, Ostell J, Pruitt KD, Tatusova T . Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 2005; 33: D54–D58.

    Article  CAS  Google Scholar 

  20. Chen J, Alt FW . Gene rearrangement and B-cell development. Curr Opin Immunol 1993; 5: 194–200.

    Article  CAS  Google Scholar 

  21. Niu H, Cattoretti G, Dalla-Favera R . BCL6 controls the expression of the B7-1/CD80 costimulatory receptor in germinal center B cells. J Exp Med 2003; 198: 211–221.

    Article  CAS  Google Scholar 

  22. Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM . Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 1997; 276: 589–592.

    Article  CAS  Google Scholar 

  23. Kusam S, Toney LM, Sato H, Dent AL . Inhibition of Th2 differentiation and GATA-3 expression by BCL6. J Immunol 2003; 170: 2435–2441.

    Article  CAS  Google Scholar 

  24. Harris MB, Chang CC, Beron MT, Danial NN, Zhang J, Keuhner D et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching. Mol Cell Biol 1999; 19: 7264–7275.

    Article  CAS  Google Scholar 

  25. Arima M, Toyama H, Ichii H, Kojima S, Okada S, Hatano M et al. A putative silencer element in the IL-5 gene recognized by Bcl6. J Immunol 2002; 169: 829–836.

    Article  CAS  Google Scholar 

  26. Phan RT, Dalla-Favera R . The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cell. Nature 2004; 432: 635–639.

    Article  CAS  Google Scholar 

  27. Sigvardsson M, O'Riordan M, Grosschedl R . EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 1997; 7: 25–36.

    Article  CAS  Google Scholar 

  28. Maltzman JS, Carmen JA, Monroe JG . Transcriptional regulation of the Icam-1 gene in antigen receptor- and phorbol ester-stimulated B lymphocytes: role for transcription factor EGR1. J Exp Med 1996; 183: 1747–1759.

    Article  CAS  Google Scholar 

  29. Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M . The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol 1992; 12: 2662–2672.

    Article  CAS  Google Scholar 

  30. Liao F, Birshtein BK, Busslinger M, Rothman P . The transcription factor BSAP (NF-HB) is essential for immunoglobulin germ-line epsilon transcription. J Immunol 1994; 152: 2904–2911.

    CAS  PubMed  Google Scholar 

  31. Singh H . Specific recognition site probes for isolating genes encoding DNA-binding proteins. Methods Enzymol 1993; 218: 551–567.

    Article  CAS  Google Scholar 

  32. Rinkenberger JL, Wallin JJ, Johnson KW, Koshland ME . An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 1996; 5: 377–386.

    Article  CAS  Google Scholar 

  33. Kishi H, Wei XC, Jin ZX, Fujishiro Y, Nagata T, Matsuda T et al. Lineage-specific regulation of the murine RAG-2 promoter: GATA-3 in T cells and Pax-5 in B cells. Blood 2000; 95: 3845–3852.

    CAS  PubMed  Google Scholar 

  34. Zwollo P, Desiderio S . Specific recognition of the blk promoter by the B-lymphoid transcription factor B-cell-specific activator protein. J Biol Chem 1994; 269: 15310–15317.

    CAS  PubMed  Google Scholar 

  35. Garrett-Sinha LA, Hou P, Wang D, Grabiner B, Araujo E, Rao S et al. Spi-1 and Spi-B control the expression of the Grap2 gene in B cells. Gene 2005; 353: 134–146.

    Article  CAS  Google Scholar 

  36. Wildey GM, Patil S, Howe PM . Smad3 potentiates transforming growth factor beta (TGFbeta)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes. J Biol Chem 2003; 278: 18069–18077.

    Article  CAS  Google Scholar 

  37. Siu G . Controlling CD4 gene expression during T cell lineage commitment. Semin Immunol 2002; 14: 441–451.

    Article  CAS  Google Scholar 

  38. Tung JW, Kunnavatana SS, Herzenberg LA, Herzenberg LA . The regulation of CD5 expression in murine T cells. BMC Mol Biol 2001; 2: 5.

    Article  CAS  Google Scholar 

  39. Hsiang YH, Goldman JP, Raulet DH . The role of c-Myb or a related factor in regulating the T cell receptor gamma gene enhancer. J Immunol 1995; 154: 5195–5204.

    CAS  PubMed  Google Scholar 

  40. Ess KC, Whitaker TL, Cost GJ, Witte DP, Hutton JJ, Aronow BJ . A central role for a single c-Myb binding site in a thymic locus control region. Mol Cell Biol 1995; 15: 5707–5715.

    Article  CAS  Google Scholar 

  41. Deftos ML, He YW, Ojala EW, Bevan MJ . Correlating notch signaling with thymocyte maturation. Immunity 1998; 9: 777–786.

    Article  CAS  Google Scholar 

  42. Deftos ML, Huang E, Ojala EW, Forbush KA, Bevan MJ . Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 2000; 13: 73–84.

    Article  CAS  Google Scholar 

  43. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T . STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999; 18: 4754–4765.

    Article  CAS  Google Scholar 

  44. Ko M, Ahn J, Lee C, Chung H, Jeon SH, Chung HY et al. E2A/HEB and Id3 proteins control the sensitivity to glucocorticoid-induced apoptosis in thymocytes by regulating the SRG3 expression. J Biol Chem 2004; 279: 21916–21923.

    Article  CAS  Google Scholar 

  45. Montgomery SB, Griffith OL, Sleumer MC, Bergman CM, Bilenky M, Pleasance ED et al. ORegAnno: an open access database and curation system for literature-derived promoters, transcription factor binding sites and regulatory variation. Bioinformatics 2006; 22: 637–640.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the comments and suggestions of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N B Perumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childress, P., Fletcher, R. & Perumal, N. LymphTF-DB: a database of transcription factors involved in lymphocyte development. Genes Immun 8, 360–365 (2007). https://doi.org/10.1038/sj.gene.6364386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gene.6364386

Keywords

Search

Quick links