Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Granulocyte, granulocyte–macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 11 December 1998

Granulocyte, granulocyte–macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells

  • X-H Pei1,
  • Y Nakanishi1,
  • K Takayama1,
  • F Bai1 &
  • …
  • N Hara1 

British Journal of Cancer volume 79, pages 40–46 (1999)Cite this article

  • 1293 Accesses

  • 76 Citations

  • Metrics details

This article has been updated

Summary

We and other researchers have previously found that colony-stimulating factors (CSFs), which generally include granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), promote invasion by lung cancer cells. In the present study, we studied the effects of these CSFs on gelatinase production, urokinase plasminogen activator (uPA) production and their activity in human lung cancer cells. Gelatin zymographs of conditioned media derived from human lung adenocarcinoma cell lines revealed two major bands of gelatinase activity at 68 and 92 kDa, which were characterized as matrix metalloproteinase (MMP)-2 and MMP-9 respectively. Treatment with CSFs increased the 68- and 92-kDa activity and converted some of a 92-kDa proenzyme to an 82-kDa enzyme that was consistent with an active form of the MMP-9. Plasminogen activator zymographs of the conditioned media from the cancer cells showed that CSF treatment resulted in an increase in a 48–55 kDa plasminogen-dependent gelatinolytic activity that was characterized as human uPA. The conditioned medium from the cancer cells treated with CSFs stimulated the conversion of plasminogen to plasmin, providing a direct demonstration of the ability of enhanced uPA to increase plasmin-dependent proteolysis. The enhanced invasive behaviour of the cancer cells stimulated by CSFs was well correlated with the increase in MMPs and uPA activities. These data suggest that the enhanced production of extracellular matrix-degrading proteinases by the cancer cells in response to CSF treatment may represent a biochemical mechanism which promotes the invasive behaviour of the cancer cells.

Similar content being viewed by others

Identification of novel therapeutic target and prognostic biomarker in matrix metalloproteinase gene family in pancreatic cancer

Article Open access 11 October 2023

The prognostic significance of the NMD core factor UPF1 in low-grade glioma

Article Open access 01 July 2025

Identification and validation of a costimulatory molecule-related signature to predict the prognosis for uveal melanoma patients

Article Open access 21 April 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Bukowski, R. M., Budd, G. T., Gibbons, J. A., Bauer, R. J., Childs, A., Antal, J., Finke, J., Tuason, L., Lorenzi, V. & McLain, D. et al (1994). Phase I trial of subcutaneous recombinant macrophage colony-stimulating factor: clinical and immunomodulatory effects. J Clin Oncol 12: 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, S. K., Wang, Y., Gertz, R. E. & Kacinski, B. M. (1995). Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res 55: 1578–1585.

    CAS  PubMed  Google Scholar 

  • Cubellis, M. V., Wun, T. C. & Blasi, F. (1990). Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1. EMBO J 9: 1079–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filderman, A. E., Bruckner, A., Kacinski, B. M., Deng, N. & Remold, H. G. (1992). Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer Res 52: 3661–3666.

    CAS  PubMed  Google Scholar 

  • Hamilton, J. A., Vairo, G., Knight, K. R. & Cocks, B. G. (1991). Activation and proliferation signals in murine macrophages. Biochemical signals controlling the regulation of macrophage urokinase-type plasminogen activator activity by colony-stimulating factors and other agents. Blood 77: 616–627.

    CAS  PubMed  Google Scholar 

  • Harmenberg, J., Hoglund, M. & Hellstrom-Lindberg, E. (1994). G- and GM-CSF in oncology and oncological haematology. Eur J Haematol 52: 1–28.

    Article  Google Scholar 

  • Hart, P. H., Vitti, G. F., Burgess, D. R., Whitty, G. A., Royston, K. & Hamilton, J. A. (1990). Activation of human monocytes by granulocyte-macrophage colony-stimulating factor: increased urokinase-type plasminogen activator activity. Blood 77: 841–848.

    Google Scholar 

  • Hekman, C. M. & Loskutoff, D. J. (1985). Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 260: 11581–11587.

    CAS  PubMed  Google Scholar 

  • Herlyn, M. & Malkowicz, S. B. (1991). Regulatory pathways in tumor growth and invasion. Lab Invest 65: 262–27.

    CAS  PubMed  Google Scholar 

  • Jeffers, M., Rong, S. & Vande Woude, G. F. (1996). Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol 16: 1115–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshikawa, N., Yasumitsu, H., Umeda, M. & Miyazaki, K. (1992). Multiple secretion of matrix serine proteinases by human gastric carcinoma cell lines. Cancer Res 52: 5046–5053.

    CAS  PubMed  Google Scholar 

  • Liotta, L. A., Steeg, P. S. & Stetler-Stevenson, W. G. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Michel, J. B. & Quertermous, T. (1989). Modulation of mRNA levels for urinary- and tissue-type plasminogen activator and plasminogen activator inhibitors 1 and 2 in human fibroblasts by interleukin 1. J Immunol 143: 890–895.

    CAS  PubMed  Google Scholar 

  • Mignatti, P. & Rifkin, D. B. (1993). Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73: 161–195.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, G. & Crabbe, T. (1995). Gelatinases A and B. Methods Enzymol 248: 471–528.

    Google Scholar 

  • Niedbala, M. J. & Picarella, M. S. (1991). Tumor necrosis factor induction of endothelial cell urokinase-type plasminogen activator mediated proteolysis of extracellular matrix and its antagonism by γ-interferon. Blood 79: 678–687.

    Google Scholar 

  • Niedbala, M. J. & Stein, M. (1991). Tumor necrosis factor induction of urokinase-type plasminogen activator in human endothelial cells. Biomed Biochim Acta 50: 427–436.

    CAS  PubMed  Google Scholar 

  • Pei, X. H., Nakanishi, Y., Takayama, K., Yatsunami, J., Bai, F., Kawasaki, M., Wakamatsu, K., Tsuruta, N., Mizuno, K. & Hara, N. (1996). Granulocyte-colony stimulating factor promotes invasion by human lung cancer cell lines in vitro. Clin Exp Metastasis 14: 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Pei, X. H., Nakanishi, Y., Takayama, K., Bai, F., Kawasaki, M. & Hara, N. (1998). G-CSF increases secretion of urokinase-type plasminogen activator by human lung cancer cells. Clin Exp Metastasis,

  • Petersen, L. C., Lund, L. R., Nielsen, L. S., Dano, K. & Skriver, L. (1988). One chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J Biol Chem 263: 11189–11195.

    CAS  PubMed  Google Scholar 

  • Ries, C. & Petrides, P. E. (1995). Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe-Seyler 376: 345–355.

    CAS  PubMed  Google Scholar 

  • Roche, P. C., Campeau, J. D. & Shaw, S. T. (1983). Comparative electrophoretic analysis of human and porcine plasminogen activators in SDS-polyacrylamide gels containing plasminogen and casein. Biochim Biophys Acta 745: 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, S. D., Fliszar, C. J., Broekelmann, T. J., Mecham, R. P., Senior, R. M. & Welgus, H. G. (1995). Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. J Biol Chem 270: 6351–6356.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, S., Nishikawa, Y., Kuroda, K., Takagi, S., Kozaki, K., Hyuga, S., Saga, S. & Matsuyama, M. (1996). Involvement of transforming growth factor β1 in autocrine enhancement of gelatinase B secretion by murine metastatic colon carcinoma cells. Cancer Res 56: 3366–3370.

    CAS  PubMed  Google Scholar 

  • Stacey, K. J., Fowles, L. F., Colman, M. C., Ostrowski, M. C. & Hume, D. A. (1995). Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol Cell Biol 15: 3430–3441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stearns, M. E. & Wang, M. (1994). Immunoassays of the metalloproteinase (MMP-2) and tissue inhibitor of metalloproteinase (TIMP 1 and 2) levels in noninvasive and metastatic PC-3 clones: effects of taxol. Oncol Res 6: 195–201.

    CAS  PubMed  Google Scholar 

  • Stetler-Stevenson, W. G. (1990). Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev 9: 289–303.

    Article  CAS  PubMed  Google Scholar 

  • Testa, J. E. & Quigley, J. P. (1990). The role of urokinase-type plasminogen activator in aggressive tumor cell behavior. Cancer Metastasis Rev 9: 353–367.

    Article  CAS  PubMed  Google Scholar 

  • Teti, A., De Giorgi, A., Spinella, M. T., Migliaccio, S., Canipari, R., Onetti Muda, A. & Faraggiana, T. (1997). Transforming growth factor-beta enhances adhesion of melanoma cells to the endothelium in vitro. Int J Cancer 72: 1013–1020.

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta, N., Yatsunami, J., Takayama, K., Nakanishi, Y., Ichinose, Y. & Hara, N. (1998). Granulocyte–macrophage colony-stimulating factor stimulates tumor invasiveness in squamous cell lung cancer. Cancer (in press)

  • Vose, J. M. & Armitage, J. O. (1995). Clinical applications of hematopoietic growth factors. J Clin Oncol 13: 1023–1035.

    Article  CAS  PubMed  Google Scholar 

  • Weimar, I. S., De Jong, D., Muller, E. J., Nakamura, T., Van Gorp, J., De Gast, G. C. & Gerritsen, W. R. (1997). Hepatocyte growth factor/scatter factor promotes adhesion of lymphoma cells to extracellular matrix molecules via alpha 4 beta 1 and alpha 5 beta 1 integrins. Blood 89: 990–1000.

    CAS  PubMed  Google Scholar 

  • Young, M. R. I., Lozano, Y., Djordjevic, A., Devata, S., Matthews, J., Young, M. E. & Wright, M. A. (1993). Granulocyte–macrophage colony-stimulating factor stimulates the metastatic properties of Lewis lung carcinoma cells through a protein kinase A signal-transduction pathway. Int J Cancer 53: 667–671.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Wang, M. H., Singh, R. K., Wells, A. & Siegal, G. P. (1997). Epidermal growth factor induces CD44 gene expression through a novel regulatory element in mouse fibroblasts. J Biol Chem 272: 14139–14146.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Research Institute for Diseases of the Chest, Faculty of Medicine, Kyushu University, Fukuoka, Japan

    X-H Pei, Y Nakanishi, K Takayama, F Bai & N Hara

Authors
  1. X-H Pei
    View author publications

    Search author on:PubMed Google Scholar

  2. Y Nakanishi
    View author publications

    Search author on:PubMed Google Scholar

  3. K Takayama
    View author publications

    Search author on:PubMed Google Scholar

  4. F Bai
    View author publications

    Search author on:PubMed Google Scholar

  5. N Hara
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Pei, XH., Nakanishi, Y., Takayama, K. et al. Granulocyte, granulocyte–macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells. Br J Cancer 79, 40–46 (1999). https://doi.org/10.1038/sj.bjc.6690009

Download citation

  • Received: 10 December 1997

  • Revised: 05 May 1998

  • Accepted: 12 May 1998

  • Published: 11 December 1998

  • Issue date: 01 January 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690009

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • colony-stimulating factors
  • lung cancer
  • invasion
  • uPA
  • MMPs

This article is cited by

  • An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer

    • Yaqiong Chen
    • Zhi Zhao
    • Guojiang Chen

    Scientific Reports (2017)

  • Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    • In-Sun Hong

    Experimental & Molecular Medicine (2016)

  • Prognostic impact of CD57, CD68, M-CSF, CSF-1R, Ki67 and TGF-beta in soft tissue sarcomas

    • Sveinung W Sorbye
    • Thomas K Kilvaer
    • Lill-Tove Busund

    BMC Clinical Pathology (2012)

  • Synergistic effect of SCF and G-CSF on stem-like properties in prostate cancer cell lines

    • Yuanyuan Ma
    • Dongming Liang
    • Zhenhe Suo

    Tumor Biology (2012)

  • Serum macrophage colony-stimulating factor (M-CSF) in patients with Hodgkin lymphoma

    • Maria Kowalska
    • Joanna Tajer
    • Jan Walewski

    Medical Oncology (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited