Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 14 January 1999

Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells

  • F Okada1,
  • K Nakai1,
  • T Kobayashi1,
  • T Shibata2,
  • S Tagami3,
  • Y Kawakami3,
  • T Kitazawa4,
  • R Kominami4,
  • S Yoshimura5,
  • K Suzuki7,
  • N Taniguchi7,
  • O Inanami8,
  • M Kuwabara8,
  • H Kishida9,
  • D Nakae9,
  • Y Konishi9,
  • T Moriuchi6 &
  • …
  • M Hosokawa1 

British Journal of Cancer volume 79, pages 377–385 (1999)Cite this article

  • 654 Accesses

  • 25 Citations

  • Metrics details

This article has been updated

Summary

We isolated six clones of weakly tumorigenic fibrosarcoma (QR) from the tumorigenic clone BMT-11 cl-9. The QR clones were unable to grow in normal C57BL/6 mice when injected s.c. (1 × 105 cells). However, they formed aggressive tumours upon co-implantation with a ‘foreign body’, i.e. a gelatin sponge, and the rate of tumour take ranged from 8% to 58% among QR clones. The enhanced tumorigenicity was due to host cell-mediated reaction to the gelatin sponge (inflammation). Immunoblot analysis and enzyme activity assay revealed a significant inverse correlation between the frequencies of tumour formation by QR clones and the levels of manganese superoxide dismutase (Mn-SOD, P<0.005) and glutathione peroxidase (GPχ, P<0.01) in the respective tumour clones. Electron spin resonance (ESR) revealed that superoxide-scavenging ability of cell lysates of the QR clone with high level of Mn-SOD was significantly higher than that with low level of the antioxidative enzyme in the presence of potassium cyanide, an inhibitor for copper–zinc superoxide dismutase (CuZn-SOD) (P<0.001). Minisatellite mutation (MSM) induced by the inflammatory cells in tumour cells were investigated by DNA fingerprint analysis after QR clones had been co-cultured with gelatin-sponge-reactive cells. The MSM rate was significantly higher in the subclones with low levels of Mn-SOD and GPχ (P<0.05) than in the subclones with high levels of both enzymes. The MSM of the subclones with low levels of both enzymes was inhibited in the presence of mannitol, a hydroxyl radical scavenger. The content of 8-hydroxydeoxyguanosine (8-OHdG) by which the cellular DNA damage caused by active oxygen species can be assessed was significantly low in the tumours arising from the QR clone with high levels of Mn-SOD and GPχ even if the clone had been co-implanted with gelatin sponge, compared with the arising tumour from the QR clone with low levels of those antioxidative enzymes (P<0.001). In contrast, CuZn-SOD and catalase levels in the six QR clones did not have any correlation with tumour progression parameters. These results suggest that tumour progression is accelerated by inflammation-induced active oxygen species particularly accompanied with declined levels of intracellular antioxidative enzymes in tumour cells.

Similar content being viewed by others

Assessment of molecular modulation by multifrequency electromagnetic pulses to preferably eradicate tumorigenic cells

Article Open access 03 December 2024

Myofibroblasts derived type V collagen promoting tissue mechanical stress and facilitating metastasis and therapy resistance of lung adenocarcinoma cells

Article Open access 10 July 2024

Disulfidptosis-related prognostic signature correlates with immunotherapy response in colorectal cancer

Article Open access 02 January 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Akporiaye, E. T. & Kudalore, M. K. (1989). Implantation of a gelatin sponge as a model for effector recruitment: tumor growth inhibition by T-lymphocytes recovered from a site of tumour rejection. Cancer Immunol Immunother 29: 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Ames, B. N., Shigenaga, M. K. & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915–7922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aruoma, O. I., Halliwell, B., Gajewski, E. & Dizdaroglu, M. (1991). Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273: 601–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ascher, N. A., Eerguson, R. M., Hoffman, R. & Simmons, R. L. (1979). Partial characterization of cytotoxic cells infiltrating spongematrix allografts. Transplantation 27: 254–259.

    Article  CAS  PubMed  Google Scholar 

  • Badway, J. A. & Karnovsky, M. L. (1980). Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 49: 695–726.

    Article  Google Scholar 

  • Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44: 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Beers, Jr R. F. & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195: 133–140.

    CAS  PubMed  Google Scholar 

  • Beutler, E. (1984). A manual of biochemical methods. In Red Cell Metabolism, edn. 3 Beutler E (ed.) pp. 72–136, Grune & Stratton: Philadelphia

    Google Scholar 

  • Blackburn, E. H. (1991). Structure and function of telomeres. Nature 350: 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B., Sies, H. & Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527–605.

    Article  CAS  PubMed  Google Scholar 

  • Choi, P. M. & Zelig, M. P. (1994). Similarity of colorectal cancer in Crohn’s disease and ulcerative colitis: implications for carcinogenesis and prevention. Gut 35: 950–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, G. & Hochstein, P. (1963). Glutathione peroxidase: the primary agent for the elimination of H2O2 in erythrocytes. Biochemistry 2: 1420–1428.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, G., Dembiec, D. & Marcus, J. (1970). Measurement of catalase activity in tissue extracts. Anal Biochem 34: 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Filmus, J. & Kerbel, R. S. (1993). Development of resistance mechanisms to the growth-inhibitory effects of transforming growth factor-beta during tumor progression. Curr Opin Oncol 5: 123–129.

    CAS  PubMed  Google Scholar 

  • Flóhe, L. (1982). Glutathione peroxidase brought into focus. In Free Radicals in Biology, Pryor WA (ed.), pp. 223–254, Academic Press: New York

    Chapter  Google Scholar 

  • Foulds, L. (1965). Multiple etiologic factors in neoplastic development. Cancer Res 25: 1339–1347.

    CAS  PubMed  Google Scholar 

  • Halliwell, B. (1987). Oxidants and human disease: some new concepts. FASEB J 1: 358–364.

    Article  CAS  PubMed  Google Scholar 

  • Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D. K. & Allshire, R. C. (1990). Telomere reduction in human colorectal carcinoma and with aging. Nature 346: 866–868.

    Article  CAS  PubMed  Google Scholar 

  • Heppner, G. & Dorcey, L. (1988). Macrophages and development of cancer. In Macrophages and Cancer, Heppner GH, Fulton AM (eds.), pp. 197–208, CRC Press: Boca Raton, Florida

    Google Scholar 

  • Ischiropoulos, H., Zhu, L. & Beckman, J. S. (1992). Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 298: 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, M., Hosokawa, M., Oh-hara, N., Niho, Y. & Kobayashi, H. (1987a). Marked granulocytosis in C57Bl/6 mice bearing a transplanted BMT-11 fibrosarcoma. J Natl Cancer Inst 78: 567–571.

    CAS  PubMed  Google Scholar 

  • Ishikawa, M., Okada, F., Hamada, J-I, Hosokawa, M. & Kobayashi, H. (1987b). Changes in the tumorigenic and metastatic properties of tumor cells treated with quercetin or 5-azacytidine. Int J Cancer 39: 338–342.

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985). Hypervariable ‘minisatellite’ regions in human DNA. Nature 314: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Kasai, H. & Nishimura, S. (1984). Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 12: 2137–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai, H., Nishimura, S., Kurokawa, Y. & Hayashi, Y. (1987). Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxydeoxyguanosine in rat target organ DNA. Carcinogenesis 8: 1959–1961.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi, T., Noji, S., Uda, T., Nakashima, Y., Takeyasu, A., Kawai, Y., Takagi, H., Tohyama, M. & Taniguchi, N. (1989). A monoclonal antibody against COOH– terminal peptide of human liver manganese superoxide dismutase. J Biol Chem 264: 5762–5767.

    CAS  PubMed  Google Scholar 

  • Kayanoki, Y., Fujii, J., Suzuki, K., Kawata, S., Matsuzawa, Y. & Taniguchi, N. (1994). Suppression of antioxidative enzyme expression by transforming growth factor-β1 in rat hepatocytes. J Biol Chem 269: 15488–15492.

    CAS  PubMed  Google Scholar 

  • Kitazawa, T., Kominami, R., Tanaka, R., Wakabayashi, K. & Nagao, M. (1994). 2-Hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine induction of recombinational mutations in mammalian cell lines as detected by DNA fingerprinting. Mol Carcinog 9: 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, M., Inukai, N., Inanami, O., Miyake, Y. I., Tsunoda, N., Maki, Y. & Sato, F. (1996). Lipid peroxide levels and superoxide-scavenging abilities of sera obtained from hotbred (thoroughbred) horses. J Vet Med Sci 58: 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Ledwith, B. J., Storer, R. D., Prahalada, S., Manam, S., Leander, K. R., van Zwieten, M. J., Nichols, W. W. & Bradley, M. O. (1990). DNA fingerprinting of 7,12-dimethylbenz[a]anthracene-induced and spontaneous CD-1 mouse liver tumors. Cancer Res 50: 5245–5249.

    CAS  PubMed  Google Scholar 

  • Ledwith, B. J., Joslyn, D. J., Troilo, P., Leander, K. R., Clair, J. H., Soper, K. A., Manam, S., Prahalada, S., van Zwieten, M. J. & Nichols, W. W. (1995). Induction of minisatellite DNA rearrangements by genotoxic carcinogens in mouse liver tumors. Carcinogenesis 16: 1167–1172.

    Article  CAS  PubMed  Google Scholar 

  • Leek, R. D., Harris, A. L. & Lewis, C. E. (1994). Cytokine networks in solid human tumors: regulation of angiogenesis. J Leukocyte Biol 56: 423–435.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, J. G. & Adams, D. O. (1987). Inflammation, oxidative DNA damage, and carcinogenesis. Environ Health Perspect 76: 19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J-J, Oberley, L. W., St Clair, D. K., Ridnour, L. A. & Oberley, T. D. (1995). Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene 10: 1989–2000.

    CAS  PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Matsumura, Y. & Tarin, D. (1992). DNA fingerprinting survey of various human tumors and their metastases. Cancer Res 52: 2174–2179.

    CAS  PubMed  Google Scholar 

  • Middleton, M. M. & Campbell, P. A. (1989). Functions of purified mouse neutrophils isolated from gelatin sponges. J Leukocyte Biol 46: 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Mitani, K., Takahashi, Y. & Kominami, R. (1990). A GGCAGG motif in minisatellites affecting their germline instability. J Biol Chem 265: 15203–15210.

    CAS  PubMed  Google Scholar 

  • Nagayasu, H., Hamada, J-I, Nakata, D., Shibata, T., Kobayashi, M., Hosokawa, M. & Takeichi, N. (1998). Reversible and irreversible tumor progression of a weakly malignant rat mammary carcinoma cell line by in vitro exposure to epidermal growth factor. Int J Oncol 12: 197–202.

    CAS  PubMed  Google Scholar 

  • Nakae, D., Mizumoto, Y., Kobayashi, E., Noguchi, O. & Konishi, Y. (1995). Improved genomic/nuclear DNA extraction for 8-hydroxydeoxyguanosine analysis of small amounts of rat liver tissue. Cancer Lett 97: 233–239.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, H., Kaneko, S., Shima, H., Inamori, H., Fukuda, H., Kominami, R., Sugimura, T. & Nagao, M. (1997). Induction of minisatellite mutation in NIH3T3 cells by treatment with the tumor promoter okadaic acid. Proc Natl Acad Sci USA 94: 10813–10816.

    Article  Google Scholar 

  • Oberley, T. D. & Oberley, L. W. (1997). Antioxidant enzyme levels in cancer. Histol Histopathol 12: 525–535.

    CAS  PubMed  Google Scholar 

  • Okada, F., Hosokawa, M., Hasegawa, J., Ishikawa, M., Chiba, I., Nakamura, Y. & Kobayashi, H. (1990). Regression mechanisms of mouse fibrosarcoma cells after in vitro exposure to quercetin: diminution of tumorigenicity with a corresponding decrease in the production of prostaglandin E2. Cancer Immunol Immunother 31: 358–364.

    Article  CAS  PubMed  Google Scholar 

  • Okada, F., Hosokawa, M., Hamada, J-I, Hasegawa, J., Kato, M., Mizutani, M., Ren, J., Takeichi, N. & Kobayashi, H. (1992). Malignant progression of a mouse fibrosarcoma by host cells reactive to a foreign body (gelatin sponge). Br J Cancer 66: 635–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, F., Hosokawa, M., Hamada, J-I, Hasegawa, J., Mizutani, M., Takeichi, N. & Kobayashi, H. (1993). Progression of a weakly tumorigenic mouse fibrosarcoma at the site of early phase of inflammation caused by plastic plates. Jpn J Cancer Res 84: 1230–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, F., Hosokawa, M., Hasegawa, J., Kuramitsu, Y., Nakai, K., Yuan, L., Lao, H., Kobayashi, H. & Takeichi, N. (1994). Enhancement of in vitro prostaglandin E2 production by mouse fibrosarcoma cells after co-culture with various anti-tumour effector cells. Br J Cancer 70: 233–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitot, H. C. (1986). The natural history of neoplastic development: progression. In Fundamentals of Oncology, Pitot HC (ed.), pp. 163–200, Marcel Dekker: New York

    Google Scholar 

  • Pitot, H. C. (1989). Progression: the terminal stage in carcinogenesis. Jpn J Cancer Res 80: 599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosin, M. P., Anwar, W. A. & Ward, A. J. (1994). Inflammation, chromosomal instability, and cancer: the schistosomiasis model. Cancer Res 54: 1929s–1933s.

    CAS  PubMed  Google Scholar 

  • Schraufstatter, I., Hyslop, P. A., Jackson, J. H. & Cochrane, C. G. (1988). Oxidant-induced DNA damage of targent cells. J Clin Invest 82: 1040–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreck, R. & Baeuerle, P. A. (1991). A role for oxygen radicals as second messengers. Trends Cell Biol 1: 39–42.

    Article  CAS  PubMed  Google Scholar 

  • Shacter, E., Beecham, E. J., Covey, J. M., Kohn, K. W. & Potter, M. (1988). Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis 9: 2297–2304.

    Article  CAS  PubMed  Google Scholar 

  • Shibutani, S., Takeshita, M. & Grollman, A. P. (1991). Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349: 431–434.

    Article  CAS  PubMed  Google Scholar 

  • Shimoda, R., Nagashima, M., Sakamoto, M., Yamaguchi, N., Hirohashim, S., Yokota, J. & Kasai, H. (1994). Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res 54: 5171–5172.

    Google Scholar 

  • Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–515.

    Article  CAS  PubMed  Google Scholar 

  • Suemizu, H., Yoshimura, S., Takeichi, N. & Moriuchi, T. (1994). Decreased expression of liver glutathione peroxidase in Long–Evans Cinnamon mutant rats predisposed to hepatitis and hepatoma. Hepatology 19: 694–700.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, K., Nakata, T., Seo, H. G., Miyazawa, N., Sugiyama, T. & Taniguchi, N. (1991a). Differential expression of Mn- and Cu,Zn-superoxide dismutases in various tissues of LEC rats. In The LEC Rat, Mori M, Yoshida MC, Takeichi N and Taniguchi N (eds.), pp. 142–148, Springer-Verlag: Tokyo

    Chapter  Google Scholar 

  • Suzuki, S., Takada, T., Sugawara, Y., Muto, T. & Kominami, R. (1991b). Quercetin induces recombinational mutations in cultured cells as detected by DNA fingerprinting. Jpn J Cancer Res 82: 1061–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor, E. & Kobayashi, K. (1992). Hepatitis C virus, a causative infectious agent of non-A, non-B hepatitis: prevalence and structure-summary of a conference on hepatitis C virus as a cause of hepatocellular carcinoma. J Natl Cancer Inst 84: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Takada, T., Suzuki, S., Sugawara, Y., Kominami, R., Arakawa, M., Niwa, O. & Yokoro, K. (1992). Somatic mutation during metastasis of a mouse fibrosarcoma line detected by DNA fingerprint analysis. Jpn J Cancer Res 83: 165–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi, N. (1992). Clinical significances of superoxide dismutases: changes in aging, diabetes, ischemia, and cancer. Adv Clin Chem 29: 1–59.

    Article  CAS  PubMed  Google Scholar 

  • Thein, S. L., Jeffreys, A. J., Gooi, H. C., Cotter, F., Klint, J., O’Cornor, N. T. J., Weatherall, D. J. & Wainscoat, J. S. (1987). Detection of somatic changes in human cancer DNA by DNA fingerprint analysis. Br J Cancer 55: 353–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitzman, S. A. & Gordon, L. I. (1990). Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 76: 655–663.

    CAS  PubMed  Google Scholar 

  • Willard, H. F. (1990). Centromeres of mammalian chromosomes. Trends Genet 6: 410–416.

    Article  CAS  PubMed  Google Scholar 

  • Yamashina, K., Miller, B. E. & Heppner, G. H. (1986). Macrophage-mediated induction of drug-resistant variants in a mouse mammary tumor cell line. Cancer Res 46: 2396–2401.

    CAS  PubMed  Google Scholar 

  • Yoshimura, S., Komatsu, N. & Watanabe, K. (1980). Purification and immunohistochemical localization of rat liver glutathione peroxidase. Biochim Biophys Acta 621: 130–137.

    Article  CAS  PubMed  Google Scholar 

  • Young, M. R. I., Okada, F., Tada, M., Hosokawa, M. & Kobayashi, H. (1991). Association of increased tumor cell responsiveness to prostaglandin E2 with more aggressive tumor behavior. Invasion Metastasis 11: 48–57.

    CAS  PubMed  Google Scholar 

  • Yu, M. W., You, S. L., Chang, A. S., Lu, S. N., Liaw, Y. F. & Chen, C. J. (1991). Association between hepatitis C virus antibodies and hepatocellular carcinoma in Taiwan. Cancer Res 51: 5621–5625.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory of Pathology, Cancer Institute, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan

    F Okada, K Nakai, T Kobayashi & M Hosokawa

  2. Department of Oral Surgery, Health Science, University of Hokkaido, Tobetsu, Ishikari, 061-0293, Japan

    T Shibata

  3. First Department of Medicine, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan

    S Tagami & Y Kawakami

  4. First Department of Biochemistry, Niigata University School of Medicine, Niigata, 951-8510, Japan

    T Kitazawa & R Kominami

  5. Department of Molecular Life Science (Cell Biology), Tokai University School of Medicine, Isehara, 259-1193, Japan

    S Yoshimura

  6. Laboratory of Cell Biology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan

    T Moriuchi

  7. Department of Biochemistry, Osaka University Medical School, Osaka, 565-0871, Japan

    K Suzuki & N Taniguchi

  8. Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Sapporo, 060-0818, Japan

    O Inanami & M Kuwabara

  9. Department of Oncological Pathology, Cancer Center, Nara Medical University, Kashihara, 634-8521, Japan

    H Kishida, D Nakae & Y Konishi

Authors
  1. F Okada
    View author publications

    Search author on:PubMed Google Scholar

  2. K Nakai
    View author publications

    Search author on:PubMed Google Scholar

  3. T Kobayashi
    View author publications

    Search author on:PubMed Google Scholar

  4. T Shibata
    View author publications

    Search author on:PubMed Google Scholar

  5. S Tagami
    View author publications

    Search author on:PubMed Google Scholar

  6. Y Kawakami
    View author publications

    Search author on:PubMed Google Scholar

  7. T Kitazawa
    View author publications

    Search author on:PubMed Google Scholar

  8. R Kominami
    View author publications

    Search author on:PubMed Google Scholar

  9. S Yoshimura
    View author publications

    Search author on:PubMed Google Scholar

  10. K Suzuki
    View author publications

    Search author on:PubMed Google Scholar

  11. N Taniguchi
    View author publications

    Search author on:PubMed Google Scholar

  12. O Inanami
    View author publications

    Search author on:PubMed Google Scholar

  13. M Kuwabara
    View author publications

    Search author on:PubMed Google Scholar

  14. H Kishida
    View author publications

    Search author on:PubMed Google Scholar

  15. D Nakae
    View author publications

    Search author on:PubMed Google Scholar

  16. Y Konishi
    View author publications

    Search author on:PubMed Google Scholar

  17. T Moriuchi
    View author publications

    Search author on:PubMed Google Scholar

  18. M Hosokawa
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Okada, F., Nakai, K., Kobayashi, T. et al. Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells. Br J Cancer 79, 377–385 (1999). https://doi.org/10.1038/sj.bjc.6690060

Download citation

  • Received: 09 January 1998

  • Revised: 07 July 1998

  • Accepted: 13 July 1998

  • Published: 14 January 1999

  • Issue date: 01 February 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690060

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • tumour progression
  • inflammation
  • antioxidative enzymes
  • active oxygen species
  • minisatellite instability

This article is cited by

  • Nrf2-Keap1 Signaling as a Potential Target for Chemoprevention of Inflammation-Associated Carcinogenesis

    • Joydeb Kumar Kundu
    • Young-Joon Surh

    Pharmaceutical Research (2010)

  • Prevention of inflammation-mediated acquisition of metastatic properties of benign mouse fibrosarcoma cells by administration of an orally available superoxide dismutase

    • F Okada
    • H Shionoya
    • M Hosokawa

    British Journal of Cancer (2006)

  • Conversion of Human Colonic Adenoma Cells to Adenocarcinoma Cells Through Inflammation in Nude Mice

    • Futoshi Okada
    • Tokuichi Kawaguchi
    • Masuo Hosokawa

    Laboratory Investigation (2000)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited