Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 29 January 1999

p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis

  • S F Zerp1,
  • A van Elsas1,
  • L T C Peltenburg1 &
  • …
  • P I Schrier1 

British Journal of Cancer volume 79, pages 921–926 (1999)Cite this article

  • 1693 Accesses

  • 72 Citations

  • Metrics details

This article has been updated

Summary

In melanoma, the relationship between sun exposure and the origin of mutations in either the N-ras oncogene or the p53 tumour-suppressor gene is not as clear as in other types of skin cancer. We have previously shown that mutations in the N-ras gene occur more frequently in melanomas originating from sun-exposed body sites, indicating that these mutations are UV induced. To investigate whether sun exposure also affects p53 in melanoma, we analysed 81 melanoma specimens for mutations in the p53 gene. The mutation frequency is higher than thus far reported: 17 specimens (21%) harbour one or more p53 mutations. Strikingly, 17 out of 22 mutations in p53 are of the C:G to T:A or CC:GG to TT:AA transitional type, strongly suggesting an aetiology involving UV exposure. Interestingly, the p53 mutation frequency in metastases was much lower than in primary tumours. In the case of metastases, a role for sun exposure was indicated by the finding that the mutations are present exclusively in skin metastases and not in internal metastases. Together with a relatively frequent occurrence of silent third-base pair mutations in primary melanomas, this indicates that the p53 mutations, at least in these tumours, have not contributed to melanomagenesis and may have originated after establishment of the primary tumour.

Similar content being viewed by others

The landscape of driver mutations in cutaneous squamous cell carcinoma

Article Open access 16 July 2021

Cutaneous melanoma

Article 03 April 2025

Desmosome mutations impact the tumor microenvironment to promote melanoma proliferation

Article 16 April 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Akslen, L. A., Monstad, S. E., Larsen, B., Straume, O. & Ogreid, D. (1998). Frequent mutations of the p53 gene in cutaneous melanoma of the nodular type. Int J Cancer 79: 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Albino, A. P., Vidal, M. J., McNutt, N. S., Shea, C. R., Prieto, V. G., Nanus, D. M., Palmer, J. M. & Hayward, N. K. (1994). Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res 4: 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A., McKenna, G. J., Baden, H. P., Halperin, A. J. & Ponten, J. (1991). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88: 10124–10128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, C., Quinn, A. G., Ro, Y. S., Angus, B. & Rees, J. L. (1993). P53 mutations are common and early events that precede tumor invasion in squamous cell neoplasia of the skin. J Invest Dermatol 100: 746–748.

    Article  CAS  PubMed  Google Scholar 

  • Castresana, J. S., Rubio, M. P., Vazquez, J. J., Idoate, M., Sober, A. J., Seizinger, B. R. & Barnhill, R. L. (1993). Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer 55: 562–565.

    Article  CAS  PubMed  Google Scholar 

  • Florenes, V. A., Oyjord, T., Holm, R., Skrede, M., Borresen, A. L., Nesland, J. M. & Fodstad, O. (1994). Tp53 allele loss, mutations and expression in malignant melanoma. Br J Cancer 69: 253–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenblatt, M. S., Bennett, W. P., Hollstein, M. & Harris, C. C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878.

    CAS  PubMed  Google Scholar 

  • Hainaut, P., Soussi, T., Shomer, B., Hollstein, M., Greenblatt, M., Hovig, E., Harris, C. C. & Montesano, R. (1997). Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res 25: 151–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, A., Blaszyk, H., Cunningham, J. S., McGovern, R., Schroeder, J. S., Helander, S. D., Pittelkow, M. R., Sommer, S. S. & Kovach, J. S. (1996). Overexpression and mutation of p53 in metastatic malignant melanomas. Int J Cancer 67: 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R. & Harris, C. C. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22: 3551–3555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollstein, M., Shomer, B., Greenblatt, M., Soussi, T., Hovig, E., Montesano, R. & Harris, C. C. (1996). Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res 24: 141–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao, M. H. & Haas, M. (1996). Nonhereditary p53 mutations in T-cell acute lymphoblastic leukemia are associated with the relapse phase. Blood 83: 2922–2930.

    Google Scholar 

  • Kanjilal, S., Pierceall, W. E., Cummings, K. K., Kripke, M. L. & Ananthaswamy, H. N. (1993). High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: evidence for strand bias and tumor heterogeneity. Cancer Res 53: 2961–2964.

    CAS  PubMed  Google Scholar 

  • Kress, S., Sutter, C., Strickland, P. T., Mukhtar, H., Schweizer, J. & Schwarz, M. (1992). Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res 52: 6400–6403.

    CAS  PubMed  Google Scholar 

  • Lehman, T. A., Bennett, W. P., Metcalf, R. A., Welsh, J. A., Ecker, J., Modali, R. V., Ullrich, S., Romano, J. W., Appella, E., Testa, J. R., Gerwin, B. I. & Harris, C. C. (1991). P53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res 51: 4090–4096.

    CAS  PubMed  Google Scholar 

  • Lübbe, J., Reichel, M., Burg, G. & Kleihues, P. (1994). Absence of p53 gene mutations in cutaneous melanoma. J Invest Dermatol 102: 819–821.

    Article  PubMed  Google Scholar 

  • Moles, J. P., Moyret, C., Guillot, B., Jeanteur, P., Guilhou, J. J., Theillet, C. & Basset-Seguin, N. (1993). p53 gene mutations in human epithelial skin cancers. Oncogene 8: 583–588.

    CAS  PubMed  Google Scholar 

  • Montano, X., Shamsher, M., Whitehead, P., Dawson, K. & Newton, J. (1994). Analysis of p53 in human cutaneous melanoma cell lines. Oncogene 9: 1455–1459.

    CAS  PubMed  Google Scholar 

  • Moshinski, D. J. & Wogan, G. N. (1997). UV-induced mutagenesis of human p53 in a vector replicated in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94: 2266–2271.

    Article  Google Scholar 

  • Moyret, C., Madsen, M. W., Cooke, J., Briand, P. & Theillet, C. (1994). Gradual selection of a cellular clone presenting a mutation at codon 179 of the p53 gene during establishment of the immortalized human breast epithelial cell line hmt-3522. Exp Cell Res 215: 380–385.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, Y., Hayashi, K. & Sekiya, T. (1991). Detection of aberrations of the p53 alleles and the gene transcript in human tumor cell lines by single-strand conformation polymorphism analysis. Cancer Res 51: 3356–3361.

    CAS  PubMed  Google Scholar 

  • Papp, T., Jafari, M. & Schiffmann, D. (1996). Lack of p53 mutations and loss of heterozygosity in non-cultured human melanocytic lesions. J Cancer Res Clin Oncol 122: 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Rady, P., Scinicariello, F., Wagner, J. R. F. & Tyring, S. K. (1992). p53 Mutations in basal cell carcinomas. Cancer Res 52: 3804–3806.

    CAS  PubMed  Google Scholar 

  • Sparrow, L. E., Soong, R., Dawkins, H. J., Iacopetta, B. J. & Heenan, P. J. (1995). P53 gene mutation and expression in naevi and melanomas. Melanoma Res 5: 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Van Elsas, A., Zerp, S. F., van der Flier, S., Kruse, K. M., Aarnoudse, C., Hayward, N. K., Ruiter, D. J. & Schrier, P. I. (1996). Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am J Path 149: 883–893.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Kranen, H. J., de Gruijl, F. R., de Vries, A., Sontag, Y., Wester, P. W., Senden, H. C., Rozemuller, E. & van Kreijl, C. F. (1995). Frequent p53 alterations but low incidence of ras mutations in UV-B-induced skin tumors of hairless mice. Carcinogenesis 16: 1141–1147.

    Article  CAS  PubMed  Google Scholar 

  • Volkenandt, M., Schlegel, U., Nanus, D. M. & Albino, A. P. (1991). Mutational analysis of the human p53 gene in malignant melanoma. Pigm Cell Res 4: 35–40.

    Article  CAS  Google Scholar 

  • Weiss, J., Schwechheimer, K., Cavenee, W. K., Herlyn, M. & Arden, K. C. (1993). Mutation and expression of the p53 gene in malignant melanoma cell lines. Int J Cancer 54: 693–699.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, A., Leffell, D. J., Kunala, S., Sharma, H. W., Gailani, M., Simon, J. A., Halperin, A. J., Baden, H. P., Shapiro, P. E., Bale, A. E. & Brash, D. E. (1993). Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 90: 4216–4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler, A., Jonason, A. S., Leffell, D. J., Simon, J. A., Sharma, H. W., Kimmelman, J., Remington, L., Jacks, T. & Brash, D. E. (1994). Sunburn and p53 in the onset of skin cancer. Nature 372: 773–776.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Clinical Oncology, University Hospital, PO Box 9600, Leiden, 2300 RC, The Netherlands

    S F Zerp, A van Elsas, L T C Peltenburg & P I Schrier

Authors
  1. S F Zerp
    View author publications

    Search author on:PubMed Google Scholar

  2. A van Elsas
    View author publications

    Search author on:PubMed Google Scholar

  3. L T C Peltenburg
    View author publications

    Search author on:PubMed Google Scholar

  4. P I Schrier
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Zerp, S., Elsas, A., Peltenburg, L. et al. p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. Br J Cancer 79, 921–926 (1999). https://doi.org/10.1038/sj.bjc.6690147

Download citation

  • Received: 21 October 1997

  • Revised: 03 July 1998

  • Accepted: 14 July 1998

  • Published: 29 January 1999

  • Issue date: 01 February 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690147

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • p53
  • UV
  • mutations
  • sun exposure
  • melanoma

This article is cited by

  • Sommer, Sonne, Sonnenschein – Umsicht ist geboten!

    • Verena Müller
    • Jochen Sven Utikal

    Der Gynäkologe (2020)

  • A new 4-(pyridinyl)-4H-benzo[g]chromene-5,10-dione ruthenium(II) complex inducing senescence in 518A2 melanoma cells

    • Madeleine Gold
    • Yusufi Mujahid
    • Rainer Schobert

    JBIC Journal of Biological Inorganic Chemistry (2019)

  • Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma

    • C Worrall
    • N Suleymanova
    • A Girnita

    Oncogene (2017)

  • Dominant Effects of Δ40p53 on p53 Function and Melanoma Cell Fate

    • Rie Takahashi
    • Svetomir N. Markovic
    • Heidi J. Scrable

    Journal of Investigative Dermatology (2014)

  • P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    • Kelly A Avery-Kiejda
    • Nikola A Bowden
    • Peter Hersey

    BMC Cancer (2011)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited