Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Induction of apoptosis in myeloid leukaemic cells by ribozymes targeted against AML1/MTG8
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 26 February 1999

Induction of apoptosis in myeloid leukaemic cells by ribozymes targeted against AML1/MTG8

  • H Matsushita1,
  • M Kizaki1,
  • H Kobayashi2,
  • A Muto1 &
  • …
  • Y Ikeda1 

British Journal of Cancer volume 79, pages 1325–1331 (1999)Cite this article

  • 619 Accesses

  • 18 Citations

  • Metrics details

This article has been updated

Summary

The translocation (8;21)(q22;q22) is a karyotypic abnormality detected in acute myeloid leukaemia (AML) M2 and results in the formation of the chimeric fusion gene AML1/MTG8. We previously reported that two hammerhead ribozymes against AML1/MTG8 cleave this fusion transcript and also inhibit the proliferation of myeloid leukaemia cell line Kasumi-1 which possesses t(8;21)(q22;q22). In this study, we investigated the mechanisms of inhibition of proliferation in myeloid leukaemic cells with t(8;21)(q22;q22) by ribozymes. These ribozymes specifically inhibited the growth of Kasumi-1 cells, but did not affect the leukaemic cells without t(8;21)(q22;q22). We observed the morphological changes including chromatin condensation, fragmentation and the formation of apoptotic bodies in Kasumi-1 cells incubated with ribozymes for 7 days. In addition, DNA ladder formation was also detected after incubation with ribozymes which suggested the induction of apoptosis in Kasumi-1 cells by the AML1/MTG8 ribozymes. However, the ribozymes did not induce the expression of CD11b and CD14 antigens in Kasumi-1 cells. The above data suggest that these ribozymes therefore inhibit the growth of myeloid leukaemic cells with t(8;21)(q22;q22) by the induction of apoptosis, but not differentiation. We conclude therefore that the ribozymes targeted against AML1/MTG8 may have therapeutic potential for patients with AML carrying t(8;21)(q22;q22) while, in addition, the product of the chimeric gene is responsible for the pathogenesis of myeloid leukaemia.

Similar content being viewed by others

Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth

Article Open access 14 February 2024

New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia

Article Open access 24 September 2021

Repurposing cabozantinib with therapeutic potential in KIT-driven t(8;21) acute myeloid leukaemias

Article Open access 08 April 2021

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Asou, H., Tashiro, S., Hamamoto, K., Otsuji, A., Kita, K. & Kamada, N. (1991). Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood 77: 2031–2036.

    CAS  PubMed  Google Scholar 

  • Cameron, S., Taylor, D. S., TePas, E. C., Speck, N. A. & Mathey-Prevot, B. (1994). Identification of a critical regulatory site in the human interleukin-3 promoter by in vivo footprinting. Blood 83: 2851–2859.

    CAS  PubMed  Google Scholar 

  • Erickson, P., Gao, J., Chang, K-S, Look, T., Whisenant, E., Raimondi, S., Lasher, R., Trujillo, J., Rowley, J. & Drabkin, H. (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80: 1825–1831.

    CAS  PubMed  Google Scholar 

  • Frank, R., Zhang, J., Uchida, H., Meyers, S., Hiebert, S. W. & Nimer, S. D. (1995). The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11: 2667–2674.

    CAS  PubMed  Google Scholar 

  • Haseloff, J. & Gerlach, W. L. (1988). Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334: 585–591.

    Article  CAS  Google Scholar 

  • Homann, M., Tzortzakaki, S., Rittner, K., Sczakiel, G. & Tabler, M. (1993). Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1. Nucleic Acids Res 21: 2809–2814.

    Article  CAS  Google Scholar 

  • Kizaki, M., Matsushita, H., Takayama, N., Muto, A., Ueno, H., Awaya, N., Kawai, Y., Asou, H., Kamada, N. & Ikeda, Y. (1996). Establishment and characterization of a novel acute promyelocytic leukemia cell line (UF-1) with retinoic acid-resistant features. Blood 88: 1824–1833.

    CAS  PubMed  Google Scholar 

  • Klampfer, L., Zhang, J., Zelenetz, A. O., Uchida, H. & Nimer, S. D. (1996). The AML1/ETO fusion protein activates transcription of Bcl-2. Proc Natl Acad Sci USA 93: 14059–14064.

    Article  CAS  Google Scholar 

  • Koeffler, H. P. (1987). Syndromes of acute nonlymphocytic leukemia. Ann Intern Med 107: 748–758.

    Article  CAS  Google Scholar 

  • Koizumi, M., Iwai, S. & Ohtsuka, E. (1988). Construction of a series of several self-cleaving RNA duplexes using synthetic 21-mer. FEBS Lett 228: 228–230.

    Article  CAS  Google Scholar 

  • Kozu, T., Sueoka, E., Okabe, S., Sueoka, N., Komori, A. & Fujiki, H. (1996). Designing of chimeric DNA/RNA hammerhead ribozymes to be targeted against AML1/MTG8 mRNA. J Cancer Res Clin Oncol 122: 254–256.

    Article  CAS  Google Scholar 

  • Lange, W., Cantin, E. M., Finke, J. & Dolken, G. (1993). In vitro and in vivo effects of synthetic ribozymes targeted against BCR/ABL mRNA. Leukemia 7: 1786–1794.

    CAS  PubMed  Google Scholar 

  • Lanotte, M., Martin-Thouvenin, V., Najman, S., Balerini, P., Valensi, F. & Berger, R. (1991). NB4, a maturation inducible cell line with t(15;17) marker isolated from human acute promyelocytic leukemia (M3). Blood 77: 1080–1086.

    CAS  Google Scholar 

  • Lenny, N., Meyers, S. & Hiebert, S. W. (1995). Functional domains of t(8;21) fusion protein, AML-1/MTG8. Oncogene 11: 1761–1769.

    CAS  PubMed  Google Scholar 

  • Leopold, L. H., Shore, S. K., Newkirk, T. A., Reddy, R. M. V. & Reddy, E. P. (1995). Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemia. Blood 85: 2162–2170.

    CAS  PubMed  Google Scholar 

  • Matsushita, H., Kobayashi, H., Mori, S., Kizaki, M. & Ikeda, Y. (1995). Ribozymes cleave the AML1/MTG8 fusion transcript and inhibit proliferation of leukemic cells with t(8;21). Biochem Biophys Res Commun 215: 431–437.

    Article  CAS  Google Scholar 

  • Meyers, S., Downing, J. R. & Hiebert, S. W. (1993). Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein–protein interactions. Mol Cell Biol 13: 6336–6345.

    Article  CAS  Google Scholar 

  • Meyers, S., Lenny, N. & Hiebert, S. W. (1995). The t(8;21) fusion protein interferes with AML-1B-1 dependent transcriptional activation. Mol Cell Biol 15: 1974–1982.

    Article  CAS  Google Scholar 

  • Miyoshi, H., Kozu, T., Shimizu, K., Enomoto, K., Maseki, N., Kaneko, Y., Kamada, N. & Ohki, M. (1993). The t(8;21)translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 12: 2715–2721.

    Article  CAS  Google Scholar 

  • Miyoshi, H., Ohira, M., Shimizu, K., Mitani, K., Hirai, H., Imai, T., Yokoyama, K. & Ohki, M. (1995). Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acid Res 23: 2762–2769.

    Article  CAS  Google Scholar 

  • Muto, A., Mori, S., Matsushita, H., Awaya, N., Ueno, H., Takayama, N., Okamoto, S., Kizaki, M. & Ikeda, Y. (1996). Serial quantification of minimal residual disease of t(8;21) acute myelogenous leukemia with RT-competitive PCR assay. Br J Haematol 95: 85–94.

    Article  CAS  Google Scholar 

  • Nuchprayoon, I., Meyers, S., Scott, L. M., Suzow, J., Hiebert, S. & Friedman, A. D. (1994). PEBP2/CBF, the murine homologue of the human myeloid AML1 and PEBP2β/CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14: 5558–5568.

    Article  CAS  Google Scholar 

  • Okuda, T., Deursen, J. V., Hiebert, S. W., Grosveld, G. & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocation in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.

    Article  CAS  Google Scholar 

  • Okuda, T., Cai, Z., Yang, S., Lenny, N., Lyu, C. J., van Deursen, J. M., Harada, H. & Downing, J. R. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 91: 3134–3143.

    CAS  Google Scholar 

  • Pace, U., Bockman, J. M., Miller, W. H. Jr, Dmitrovsky, E. & Goldberg, A. R. (1994). A ribozyme which discriminates in vitro between PML/RARα, the t(15;17)-associated fusion RNA of acute promyelocytic leukemia, and PML and RARα, the transcripts from the nonrearranged alleles. Cancer Res 54: 6365–6369.

    CAS  PubMed  Google Scholar 

  • Pachuk, C. J., Yoon, K., Moelling, K. & Coney, L. R. (1994). Selective cleavage of bcr-abl chimeric RNAs by a ribozyme targeted to non-contiguous sequences. Nucleic Acids Res 22: 301–307.

    Article  CAS  Google Scholar 

  • Rösl, F. (1992). A simple and rapid method for detection of apoptosis in human cells. Nucleic Acids Res 20: 5243

    Article  Google Scholar 

  • Sakakura, C., Yamaguchi-Iwai, Y., Satake, M., Bae, S. C., Takahashi, A., Ogawa, E., Hagiwara, A., Takahashi, T., Murakami, A., Makino, K., Nakagawa, T., Kamada, N. & Ito, Y. (1994). Growth inhibition and induction of differentiation of t(8;21) acute myeloid leukemia cells by the DNA-binding domain of PEBP2 and the AML1/MTG8(ETO)-specific antisense oligonucleotide. Proc Natl Acad Sci USA 91: 11723–11727.

    Article  CAS  Google Scholar 

  • Schiffer, C. A., Lee, E. D., Tomiyasu, T., Wiernik, P. H. & Testa, J. R. (1989). Prognostic impact of cytogenetic abnormalities in patients with de novo acute nonlymphocytic leukemia. Blood 73: 263–270.

    CAS  PubMed  Google Scholar 

  • Shore, S. K., Nabissa, P. M. & Reddy, E. P. (1993). Ribozyme-mediated cleavage of the BCRABL oncogene transcript: in vitro cleavage of RNA and in vivo loss of P210 protein-kinase activity. Oncogene 8: 3183–3188.

    CAS  PubMed  Google Scholar 

  • Snyder, D. S., Wu, Y., Wang, J. L., Rossi, J. J., Swiderski, P., Kaplan, B. E. & Forman, S. J. (1993). Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 82: 600–605.

    CAS  PubMed  Google Scholar 

  • Takahashi, A., Satake, M., Yamaguchi-Iwai, Y., Bae, S. C., Lu, J., Maruyama, M., Zhang, Y. W., Oka, H., Arai, N., Arai, K. & Ito, Y. (1995). Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood 86: 607–616.

    CAS  PubMed  Google Scholar 

  • Tanaka, T., Tanaka, K., Ogawa, S., Kurokawa, M., Mitani, K., Nishida, J., Shibata, Y., Yazaki, Y. & Hirai, H. (1995). An acute myeloid leukemia gene, AML1, regulates hematopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO 14: 341–350.

    Article  CAS  Google Scholar 

  • Tanaka, T., Kurokawa, M., Ueki, K., Tanaka, K., Imai, Y., Mitani, K., Okazaki, K., Sagata, N., Yazaki, Y., Shibata, Y., Kadowaki, T. & Hirai, H. (1996). The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol 16: 3967–3979.

    Article  CAS  Google Scholar 

  • Tashiro, S., Kyo, T., Tanaka, K., Oguma, N., Hashimoto, T., Dohy, H. & Kamada, N. (1992). The prognostic value of cytogenetic analysis in patients with acute nonlymphocytic leukemia treated with the same intensive chemotherapy. Cancer 70: 2809–2815.

    Article  CAS  Google Scholar 

  • Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H. & Speck, N. A. (1996). Disruption of the cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 93: 3444–3449.

    Article  CAS  Google Scholar 

  • Yergeau, D. A., Hetherington, C. J., Wang, Q., Zhang, P., Sharpe, A. H., Binder, M., Martin-Padilla, M., Tener, D. G. & Speck, N. A. (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML-ETO fusion gene. Nat Genet 15: 303–306.

    Article  CAS  Google Scholar 

  • Zhang, D., Fujioka, K., Hetherington, C. J., Shapiro, L. H., Chen, H., Look, T. & Tenen, D. G. (1994). Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol 14: 8085–8089.

    Article  CAS  Google Scholar 

  • Zhang, D., Hetherington, C. J., Meyers, S., Rhoades, K. L., Larson, C. J., Chen, H., Hiebert, S. W. & Tenen, D. G. (1996). CCAAT enhancer-binding protein (C/EBP) and AML1 (CBFα2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 16: 1231–1240.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Haematology, Keio University School of Medicine, Tokyo, Japan

    H Matsushita, M Kizaki, A Muto & Y Ikeda

  2. Department of Laboratory Medicine, National Defense Medical College, Saitama, Japan

    H Kobayashi

Authors
  1. H Matsushita
    View author publications

    Search author on:PubMed Google Scholar

  2. M Kizaki
    View author publications

    Search author on:PubMed Google Scholar

  3. H Kobayashi
    View author publications

    Search author on:PubMed Google Scholar

  4. A Muto
    View author publications

    Search author on:PubMed Google Scholar

  5. Y Ikeda
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Matsushita, H., Kizaki, M., Kobayashi, H. et al. Induction of apoptosis in myeloid leukaemic cells by ribozymes targeted against AML1/MTG8. Br J Cancer 79, 1325–1331 (1999). https://doi.org/10.1038/sj.bjc.6690214

Download citation

  • Received: 12 November 1997

  • Revised: 13 August 1998

  • Accepted: 08 October 1998

  • Published: 26 February 1999

  • Issue date: 01 March 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690214

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • apoptosis
  • ribozyme
  • AML
  • AML1/MTG8
  • t(8;21)

This article is cited by

  • The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells

    • Natalia Martinez
    • Bettina Drescher
    • Olaf Heidenreich

    BMC Cancer (2004)

  • Common themes in the pathogenesis of acute myeloid leukemia

    • Myriam Alcalay
    • Annette Orleth
    • Pier Giuseppe Pelicci

    Oncogene (2001)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited