Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Influence of O6-benzylguanine on the anti-tumour activity and normal tissue toxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea and molecular combinations of 5-fluorouracil and 2-chloroethyl-1-nitrosourea in mice
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 26 February 1999

Influence of O6-benzylguanine on the anti-tumour activity and normal tissue toxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea and molecular combinations of 5-fluorouracil and 2-chloroethyl-1-nitrosourea in mice

  • M C Bibby1,
  • M J Thompson1,2,
  • J A Rafferty3,
  • G P Margison3 &
  • …
  • R S McElhinney4 

British Journal of Cancer volume 79, pages 1332–1339 (1999)Cite this article

  • 768 Accesses

  • 4 Citations

  • Metrics details

This article has been updated

Summary

Previous studies have demonstrated that novel molecular combinations of 5-fluorouracil (5FU) and 2-chloroethyl-1-nitrosourea (CNU) have good preclinical activity and may exert less myelotoxicity than the clinically used nitrosoureas such as 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). This study examined the effect of O6-alkylguanine-DNA-alkyltransferase (ATase) depletion by the pseudosubstrate O6-benzylguanine (BG) on the anti-tumour activity and normal tissue toxicity in mice of three such molecular combinations, in comparison with BCNU. When used as single agents at their maximum tolerated dose, all three novel compounds produced a significant growth retardation of BCNU-resistant murine colon and human breast xenografts. This in vivo anti-tumour effect was potentiated by BG, but was accompanied by severe myelotoxicity as judged by spleen colony forming assays. However, while tumour resistance to BCNU was overcome using BG, this was at the expense of enhanced bone marrow, gut and liver toxicity. Therefore, although this ATase-depletion approach resulted in improved anti-tumour activity for all three 5-FU:CNU molecular combinations, the potentiated toxicities in already dose-limiting tissues indicate that these types of agents offer no therapeutic advantage over BCNU when they are used together with BG.

Similar content being viewed by others

MCL1 nuclear translocation induces chemoresistance in colorectal carcinoma

Article Open access 18 January 2022

In vitro and in silico evaluation of fluorinated diphenylamine chalcone derivatives as potential antimalarial and anticancer agents

Article Open access 29 May 2025

Bio-computational modeling, POM analysis and molecular dynamic simulation for novel synthetic quinolone and benzo[d][1,3]oxazine candidates as antimicrobial inhibitors

Article Open access 20 November 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Baer, J. C., Freeman, A. A., Newlands, E. S., Watson, A. J., Rafferty, J. A. & Margison, G. P. (1993). Depletion of O6-alkylguanine-DNA-alkyltransferase correlates with potentiation of temozolomide in human tumour cells. Br J Cancer 67: 1299–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibby, M. C., Double, J. A., Wahed, I. A., Hirbawi (Abu-Khalaf), N. & Baker, T. G. (1988). The logistics of broader pre-clinical evaluation of potential anti-cancer agents with reference to anti-tumour activity and toxicity of mitozolomide. Br J Cancer 58: 139–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibby, M. C., Sleigh, N. R., Loadman, P. M. & Double, J. A. (1993). Potentiation of EO-9 anti-tumour activity by hydralazine. Eur J Cancer 29A: 897–906.

    PubMed  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brennand, J. & Margison, G. P. (1986). Reduction of the toxicity and mutagenicity of alkylating agents in mammalian cells harbouring the Escherichia coli alkyltransferase gene. Proc Natl Acad Sci USA 83: 6292–6296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brent, T. P., von Wronski, M. A., Edwards, C. C., Bromley, M., Margison, G. P., Rafferty, J. A., Pegram, C. N. & Bigner, D. D. (1993). Identification of nitrosourea-resistant human rhabdomyosarcomas by in situ immunostaining of O6-methylguanine-DNA-methyltransferase. Oncol Res 5: 83–86.

    CAS  PubMed  Google Scholar 

  • Bronstein, S. M., Hooth, M. J., Swenberg, J. A. & Skopek, T. R. (1992). Modulation of ethylnitrosourea-induced toxicity and mutagenicity in human cells by O6-benzylguanine. Cancer Res 52: 3851–3856.

    CAS  PubMed  Google Scholar 

  • Chinnasamy, N., Rafferty, J. A., Hickson, I., Ashby, J., Tinwell, H., Margison, G., Dexter, T. M. & Fairbairn, L. J. (1997). O6-benzylguanine potentiates the in vivo toxicity and clastogenicity of temozolomide and BCNU in mouse bone marrow. Blood 89: 1566–1573.

    Article  CAS  PubMed  Google Scholar 

  • Crone, T. M. & Pegg, A. E. (1993). A single amino acid change in human O6-alkylguanine-DNA alkyltransferase decreasing sensitivity to inactivation by O6-benzylguanine. Cancer Res 53: 4750–4753.

    CAS  PubMed  Google Scholar 

  • Dolan, M. E., Chae, M. Y., Pegg, A. E., Mullen, J. H., Friedman, H. S. & Moschel, R. C. (1994). Metabolism of O6-benzylguanine, an inactivator of O6-alkylguanine-DNA alkyltransferase. Cancer Res 54: 5123–5130.

    CAS  PubMed  Google Scholar 

  • Dolan, M. E., Corsico, C. D. & Pegg, A. E. (1985). Exposure of HELA cells to O6-alkylguanines increases the sensitivity to the cytotoxic effects of alkylating agents. Biochem Biophys Res Commun 132: 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Dolan, E. M., Moschell, R. C. & Pegg, A. E. (1990). Depletion of mammalian O6-alkylguanine-DNA-alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci USA 87: 5368–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan, M. E., Stine, L., Mitchell, R. B., Moschel, R. C. & Pegg, A. E. (1990). Modulation of mammalian O6-alkylguanine-DNA alkyltransferase in vivo by O6-benzylguanine and its effect on the sensitivity of a human glioma tumour to 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea. Cancer Communications 2: 371–377.

    Article  CAS  PubMed  Google Scholar 

  • Dolan, M. E. & Pegg, A. E. (1997). O6-benzylguanine and its role in chemotherapy. Clinical Cancer Research 3: 837–847.

    CAS  PubMed  Google Scholar 

  • Down, J. D., Boudewijn, A., Dillingh, J. H., Fox, B. W. & Ploemacher, R. E. (1994). Relationships between ablation of distinct haematopoietic cell subsets and the development of donor bone marrow engrafment following recipient pretreatment with different alkylating drugs. Br J Cancer 70: 611–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumenco, L. L., Allay, E., Norton, K. & Gerson, S. L. (1993). The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science 259: 219–222.

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn, L. J., Watson, A. J., Rafferty, J. A., Elder, R. H. & Margison, G. P. (1995). O6-benzylguanine increases the sensitivity of human primary bone marrow cells to the cytotoxic effects of temozolomide. Experimental Haematology 23: 112–116.

    CAS  Google Scholar 

  • Geran, R. I., Greenberg, N. H., MacDonald, M. M., Schumacher, A. M. & Abbott, B. J. (1972). Protocols for screening chemical agents and natural products against animal tumours and other biological systems (third edition). Cancer Chemother Reports 3: 1–103.

    Google Scholar 

  • Gerson, S. L., Trey, J. E. & Miller, K. (1988). Potentiation of nitrosourea cytotoxicity in human leukemic cells by inactivation of O6-alkylguanine-DNA alkyltransferase. Cancer Res 48: 1521–1527.

    CAS  PubMed  Google Scholar 

  • Hendriks, H. R., Piazo, P. E., Berger, D. P., Kooistra, K. L., Bibby, M. C., Boven, E., Dreefvandermeulen, H. C., Henrar, R. E. C., Fiebeg, H. H., Double, J. A., Hornstra, H. W., Pinedo, H. M., Workman, P. & Schwartsmann, G. (1993). EO9 – a novel bioreductive alkylating indolquinone with preferential solid tumour activity and lack of bone marrow toxicity in preclinical models. Eur J Cancer 29A: 897–906.

    Article  CAS  PubMed  Google Scholar 

  • Hickson, I., Fairbairn, L. J., Chinnasamy, N., Margison, G. P., Dexter, T. M. & Rafferty, J. A. (1996). Protection of mammalian cells against chloroethylating agent toxicity by an O6-benzylguanine-resistant mutant of human O6-alkylguanine-DNA-alkyltransferase. Gene Ther 3: 868–877.

    CAS  PubMed  Google Scholar 

  • Hickson, I., Fairbairn, L. J., Chinnasamy, N., Dexter, T. M., Margison, G. P. & Rafferty, J. A. (1997). Towards gene therapy for stem cell protection using mutant human O6-alkylguanine-DNA alkyltransferase. Cancer Gene Ther 4: 70

    Google Scholar 

  • Jelinek, J., Kleibl, K., Dexter, T. M. & Margison, G. P. (1988). Transfection of murine multi-potent haemopoietic stem cells with an E. coli DNA alkyltransferase gene confers resistance to the toxic effects of alkylating agents. Carcinogenesis 9: 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Jelinek, J., Fairbairn, L. J., Dexter, T. M., Rafferty, J. A., Stocking, C., Ostertag, W. & Margison, G. P. (1996). Long-term protection of haemopoiesis against the cytotoxic effects of multiple doses of nitrosourea by retrovirus-mediated expression of human O6-alkylguanine-DNA-alkyltransferase. Blood 87: 957–1961.

    Article  Google Scholar 

  • Kaina, B., Fritz, G., Mitra, S. & Coquerelle, T. (1991). Transfection and expression of human O6-methylguanine DNA-methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis 11: 777–780.

    Google Scholar 

  • Kurpad, S. N., Dolan, E. M., McLendon, R. E., Archer, G. E., Moschel, R. C., Pegg, A. E., Bigner, D. D. & Friedman, H. S. (1997). Intra-arterial O6-benzylguanine enables the specific therapy of nitrosourea-resistant intracranial human glioma xenografts in athymic rats with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemother Pharmacol 39: 307–316.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. M., Thatcher, N. & Margison, G. P. (1991). O6-alkylguanine-DNA-alkyltransferase depletion and regeneration in human peripheral lymphocytes following dacarbazine and fotemustine. Cancer Res 51: 619–623.

    CAS  PubMed  Google Scholar 

  • Lee, S. M., Thatcher, N., Crowther, D. & Margison, G. P. (1992). In vivo depletion of O6-alkylguanine-DNA-alkyltransferase in lymphocytes and melanoma of patients treated with CB10-277, a new DTIC analogue. Cancer Chemother Pharmacol 31: 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Loadman, P. M., Matthew, A. M., McCormick, J. E., McElhinney, R. S. & Bibby, M. C. (1996). Pharmacokinetics and antitumour activity of B.4152, a reactive molecular combination of 5-fluorouracil and N-(2chloroethyl)-N-nitrosourea, and its uracil analogue. Anticancer Drug Des 11: 117–128.

    CAS  PubMed  Google Scholar 

  • Loktionova, N. A. & Pegg, A. E. (1996). Point mutations in human O6-alkylguanine-DNA-alkyltransferase prevent the sensitisation by O6-benzylguanine to killing by N,N′-bis(2-chloroethyl)-N-nitrosourea. Cancer Res 56: 1578–1583.

    CAS  PubMed  Google Scholar 

  • Lord, B. I., Marshall, E., Woolford, L. B. & Hunter, M. G. (1996). BB-10010/MIP-1α in vivo maintains haemopoietic recovery following repeated cycles of sublethal irradiation. Br J Cancer 74: 1017–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margison, G. P., Hickson, I., Jelinek, K. J., Elder, R. H., Rafferty, J. A., Faibairn, L. J., Dexter, T. M., Stocking, C., Baum, C., Ostertag, W., Donnelly, D., McMurray, T. B. H., McCormick, J. & McElhinney, R. S. (1996). Resistance to alkylating agents: more or less. Anticancer Drugs 7: 109–116.

    Article  Google Scholar 

  • Margison, G. P. & O’Connor, P. J. (1990). Biological consequences of reactions with DNA: role of specific lesions. In Handbook of Experimental Pharmacology 94/1, Cooper CS and Grover PL (eds) pp. 547–571. Springer-Verlag: Berlin

    Google Scholar 

  • Matthew, A. M., Phillips, R. M., Loadman, P. M. & Bibby, M. C. (1993). Preclinical evaluation of a novel chloroethylating agent, clomesome. Br J Cancer 67: 441–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthew, A. M., Christensson, P. I., Seidegard, J., Tuvesson, H., Bibby, M. C., Hartleyasp, B. & Craven, P. J. (1994). Effect of drug scheduling on the anti-tumour activity and bone marrow toxicity of tauromustine (TCNU). International Journal of Oncology 4: 403–409.

    CAS  PubMed  Google Scholar 

  • McCoss, M., Chen, A. & Tolman, R. L. (1998). Synthesis of the chiral acyclonucleoside antiherpetic agent (S)-9-(2,3-dihydroxy-1-propoxymethyl)guanine. Tetrahedron Letters 26: 1815–1818.

    Article  Google Scholar 

  • McElhinney, R. S., McCormick, J. E., Bibby, M. C., Double, J. A., Atassi, G., Dumont, P., Pratesi, G. & Radacic, M. (1989a). Nucleoside analogues: 7. Effects on colon, breast and lung tumours in mice of 5-fluorouracil/nitrosourea combinations incorporating aloxy and oxidised sulphur fractions. Anticancer Drugs 3: 255–269.

    Google Scholar 

  • McElhinney, R. S., McCormick, J. E., Bibby, M. C., Double, M. C., Atassi, G., Dumont, P., Pratesi, G. & Radacic, M. (1989b). Nucleoside analogues: 8. Some isomers of B.3839, the original 5-fluorouracil/nitrosourea molecular combination, and their effect on colon, breast and lung tumours in mice. Anticancer Drug Des 4: 1–20.

    CAS  PubMed  Google Scholar 

  • McMurray, T. B. H., McElhinney, R. S., McCormick, J. E., Elder, R. H., Kelly, J., Margison, G. P., Rafferty, J. A., Watson, A. J. & Willington, M. A. (1994). Preparation of O6-substituted guanine derivatives as anti-tumour agents. International Patent Application WO94/29, 312, 22 December

  • Mitchell, R. B., Moschel, R. C. & Dolan, M. E. (1992). Effect of O6-benzylguanine on the sensitivity of human tumour xenografts to 1,3-bis(2-chloroethyl)-1-nitrosourea and on DNA interstrand cross-link formation. Cancer Res 52: 1171–1175.

    CAS  PubMed  Google Scholar 

  • Moritz, T., Mackay, W., Glassner, B. G., Williams, D. A. & Samson, L. (1995). Retrovirus-mediated expression of a cDNA repair protein in bone marrow protects haematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 55: 2608–2614.

    CAS  PubMed  Google Scholar 

  • Nakatsuru, Y., Matsukuma, S., Nemoto, N., Sugano, H., Sekiguchi, M. & Ishikawa, T. (1993). O6-methylguanine-DNA methyltransferase protects against nitrosamine-induced hepatocarcinogenesis. Proc Natl Acad Sci USA 90: 6468–6472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naundorf, H., Rewasowa, E. C., Fichtner, I., Buttner, B., Becker, M. & Gorlish, M. (1992). Characterisation of two human primary mammary carcinomas, MT-1 and MT-3, suitable for in vivo testing of ether lipids and their derivatives. Breast Cancer Res Treat 23: 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Newlands, E. S., Blackledge, G. R. P., Slack, J. A., Rustin, G. J. S., Smith, D. B., Stuart, N. S. A., Quarterman, C. P., Hoffman, R., Stevens, M. F. G., Brampton, M. H. & Gibson, A. C. (1992). Phase I trial of temozolomide (CCRG 81045: M and B 39831 NSC 362856). Br J Cancer 65: 287–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly, S. M., Newlands, E. S., Glaser, M. G., Brampton, M., Rice-Edwards, J. M., Illingworth, R. D., Richards, P. G., Kennard, C., Colquhoun, I. R., Lewis, P. & Stevens, M. F. G. (1993). Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur J Cancer 29A: 940–942.

    Article  PubMed  Google Scholar 

  • Patchen, M. L. (1995). Amifostine plus granulocyte colony-stimulating factor therapy enhances recovery from supralethal radiation exposures: preclinical experience in animal models. Eur J Cancer 31A, S1: S17–S21.

    Article  Google Scholar 

  • Pegg, A. E. & Dolan, M. E. (1987). Properties and assay of mammalian O6-alkylguanine-DNA alkyltransferase. Pharmacol Ther 34: 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Pegg, A. E. (1990). Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenesis and therapeutic agents. Cancer Res 50: 6119–6129.

    CAS  PubMed  Google Scholar 

  • Pegg, A. E. & Byers, T. L. (1992). Repair of DNA containing O6-alkylguanine. FASEB J 6: 2302–2310.

    Article  CAS  PubMed  Google Scholar 

  • Pegg, A. E., Boosalis, M., Samson, L., Moschel, R. C., Byers, T. L., Swenn, K. & Dolan, M. E. (1993). Mechanism of inactivation of human O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry 32: 11998–12006.

    Article  CAS  PubMed  Google Scholar 

  • Rafferty, J. A., Hickson, I., Chinnasamy, N., Lashford, L. S., Margison, G. P., Dexter, T. M. & Fairbairn, L. J. (1996). Chemoprotection of normal tissues by transfer of drug resistance genes. Cancer Metastasis Rev 15: 365–383.

    Article  CAS  PubMed  Google Scholar 

  • Reese, J. S., Koc, O. N., Lee, K. M., Liu, L. L., Allay, J. A., Phillips, W. P. & Gerson, S. L. (1996). Retroviral transduction of mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to O6-benzylguanine plus 1,3-bis (2-chloroethyl)-1-nitrosourea. Proc Natl Acad Sci USA 93: 14088–14093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siemann, D. W. (1996). The in situ tumour response to combinations of cyclophosphamide and tirpazamine. Br J Cancer 74 S27: S65–S69.

    Google Scholar 

  • Sieman, D. W. & Byers, K. L. (1993). In vivo therapeutic potential of combination thiol depletion and alkylating chemotherapy. Br J Cancer 68: 1071–1079.

    Article  Google Scholar 

  • Thompson, M. J., Abdul Rahman, S., Baker, T. G. & Bibby, M. C. (1996). Potentiation of testicular cytotoxicity by the alkyltransferase inhibitor O6-benzylguanine and the 5-fluorouracil/N-(2-chloroethyl)-N-nitrosourea molecular combination B.4152. Reprod Toxicol 10: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Till, J. E. & McCulloch, E. A. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222.

    Article  CAS  PubMed  Google Scholar 

  • von Hofe, E., Fairbairn, L. & Margison, G. P. (1992). Relationship between O6-alkylguanine-DNA alkyltransferase activity and N-methyl-N′-nitro-N-nitrosoguanidine-induced mutation, transformation, and cytotoxicity in C3H/10T1/2 cells expressing exogenous alkyltransferase genes. Proc Natl Acad Sci USA 89: 11199–11203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, M. C., Masters, J. R. W. & Margison, G. P. (1992). O6-alkylguanine-DNA-alkyltransferase activity and nitrosourea sensitivity in human cancer cell lines. Br J Cancer 66: 840–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedge, S. R., Porteous, J. K., May, B. L. & Newlands, E. S. (1996). Potentiation of temozolomide and 1,3-bis(2-chloroethyl)-nitrosourea cytotoxicity of O6-benzylguanine: a comparative study in vitro. Br J Cancer 73: 482–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedge, S. R. & Newlands, E. S. (1996). O6-benzylguanine enhances the sensitivity of a glioma xenograft with low O6-alkylguanine-DNA alkyltransferase activity to temozolomide and BCNU. Br J Cancer 73: 1049–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarosh, D. B. (1985). The role of O6-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat Res 145: 1–16.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Clinical Oncology Unit, University of Bradford, Bradford, BD7 1DP, UK

    M C Bibby & M J Thompson

  2. Department of Biomedical Sciences, University of Bradford, Bradford, BD7 1DP, UK

    M J Thompson

  3. CRC Section of Genome Damage and Repair, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, M20 4BX, UK

    J A Rafferty & G P Margison

  4. University Chemical Laboratory, Trinity College, Dublin, 2, Ireland

    R S McElhinney

Authors
  1. M C Bibby
    View author publications

    Search author on:PubMed Google Scholar

  2. M J Thompson
    View author publications

    Search author on:PubMed Google Scholar

  3. J A Rafferty
    View author publications

    Search author on:PubMed Google Scholar

  4. G P Margison
    View author publications

    Search author on:PubMed Google Scholar

  5. R S McElhinney
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Bibby, M., Thompson, M., Rafferty, J. et al. Influence of O6-benzylguanine on the anti-tumour activity and normal tissue toxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea and molecular combinations of 5-fluorouracil and 2-chloroethyl-1-nitrosourea in mice. Br J Cancer 79, 1332–1339 (1999). https://doi.org/10.1038/sj.bjc.6690215

Download citation

  • Received: 06 March 1998

  • Revised: 16 September 1998

  • Accepted: 22 September 1998

  • Published: 26 February 1999

  • Issue date: 01 March 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690215

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • O6-benzylguanine
  • nitrosoureas
  • anti-tumour
  • tissue toxicity
  • mouse
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited