Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 26 February 1999

Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells

  • I Georgakoudi1,
  • P C Keng1,2 &
  • T H Foster1,2,3,4 

British Journal of Cancer volume 79, pages 1372–1377 (1999)Cite this article

  • 739 Accesses

  • 27 Citations

  • Metrics details

This article has been updated

Summary

We have studied the effects of hypoxia on aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) synthesis in EMT6 monolayer cultures characterized by different cell densities and proliferation rates. Specifically, after ALA incubation under hypoxic or normoxic conditions, we detected spectrofluorometrically the PpIX content of the following populations: (a) low-density exponentially growing cells; (b) high-density fed-plateau cells; and (c) high-density unfed-plateau cells. These populations were selected either for the purpose of comparison with other in vitro studies (low-density exponentially growing cells) or as representatives of tumour regions adjacent to (high-density fed-plateau cells) and further away from (high-density unfed-plateau cells) capillaries. The amount of PpIX per cell produced by each one of these populations was higher after normoxic ALA incubation. The magnitude of the effect of hypoxia on PpIX synthesis was dependent on cell density and proliferation rate. A 42-fold decrease in PpIX fluorescence was observed for the high-density unfed-plateau cells. PpIX production by the low-density exponential cells was affected the least by ALA incubation under hypoxic conditions (1.4-fold decrease), whereas the effect on the high-density fed-plateau population was intermediate (20-fold decrease).

Similar content being viewed by others

5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells

Article Open access 01 April 2022

Protoporphyrin IX plasma and blood pharmacokinetics and brain tumor distribution determined by a validated LC–MS/MS method

Article Open access 01 July 2025

Profound hypotonia in an infant with δ-aminolevulinic acid dehydratase deficient porphyria

Article 11 December 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Bech, Ø, Berg, K. & Moan, J. (1997). The pH dependency of protoporphyrin IX formation in cells incubated with 5-aminolevulinic acid. Cancer Lett 113: 25–29.

    Article  CAS  Google Scholar 

  • Bermúdez Moretti, M., Correa García, S., Stella, C., Ramos, E. & Del C Batlle, A. M. C. (1993). δ-aminolevulinic acid transport in Saccharomyces cerevisiae. Int J Biochem 25: 1917–1924.

    Article  Google Scholar 

  • Crow, E. L., Davis, F. A. & Maxfield, M. W. (1960). Statistics Manual, Dover Publications: New York

    Google Scholar 

  • Dietel, W., Bolsen, K., Dickson, E., Fritsch, C., Pottier, R. & Wendenburg, R. (1996). Formation of water-soluble porphyrins and protoporphyrin IX in 5-aminolevulinic-acid-incubated carcinoma cells. J Photochem Photobiol B Biol 33: 225–231.

    Article  CAS  Google Scholar 

  • Falk, J. E., Porra, R. J., Brown, A., Moss, F. & Larminie, H. E. (1959). Effect of oxygen tension on haem and porphyrin biosynthesis. Nature 184: 1217–1219.

    Article  CAS  Google Scholar 

  • Fingar, V. H., Wieman, T. J., McMahon, K. S., Haydon, P. S., Halling, B. P., Yuhas, D. A. & Winkelman, J. W. (1997). Photodynamic therapy using a protoporphyrinogen oxidase inhibitor. Cancer Res 57: 4551–4556.

    CAS  PubMed  Google Scholar 

  • Fukuda, H., Batlle, A. M. C. & Riley, P. A. (1993). Kinetics of porphyrin accumulation in cultured epithelial cells exposed to ALA. Int J Biochem 25: 1407–1410.

    Article  CAS  Google Scholar 

  • Gibson, S. L., Havens, J. J., Foster, T. H. & Hilf, R. (1997). Time-dependent intracellular accumulation of δ-aminolevulinic acid, induction of porphyrin synthesis and subsequent phototoxicity. Photochem Photobiol 65: 416–421.

    Article  CAS  Google Scholar 

  • Gibson, S. L., Cupriks, D. J., Havens, J. J., Nguyen, M. L. & Hilf, R. (1998). A regulatory role for porphobilinogen deaminase (PBGD) in δ-aminolaevulinic acid (δ-ALA)-induced photosensitization? Br J Cancer 77: 235–243.

    Article  CAS  Google Scholar 

  • Hanania, J. & Malik, Z. (1992). The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells. Cancer Lett 65: 127–131.

    Article  CAS  Google Scholar 

  • Iinuma, S., Farshi, S. S., Ortel, B. & Hasan, T. (1994). A mechanistic study of cellular photodestruction with 5-aminolevulinic acid-induced porphyrin. Br J Cancer 70: 21–28.

    Article  CAS  Google Scholar 

  • Kennedy, J. C. & Pottier, R. H. (1992). Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B Biol 14: 275–292.

    Article  CAS  Google Scholar 

  • Kennedy, J. C., Pottier, R. H. & Pross, D. C. (1990). Photodynamic therapy with endogenous protoporphyrin IX: basic principle and present clinical experience. J Photochem Photobiol B Biol 6: 143–148.

    Article  CAS  Google Scholar 

  • Kennedy, J. C., Marcus, S. L. & Pottier, R. H. (1996). Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results. J. Clin Laser Med Surg 14: 289–304.

    Article  CAS  Google Scholar 

  • Krammer, B. & Überriegler, K. (1996). In-vitro investigation of ALA-induced protoporphyrin IX. J Photochem Photobiol B: Biol 36: 121–126.

    Article  CAS  Google Scholar 

  • Kriegmair, M., Baumgartner, R. & Knüchel, R. (1994). Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid. Urology 44: 836–841.

    Article  CAS  Google Scholar 

  • Moan, J., Bech, Ø, Gaullier, J-M, Stokke, T., Steen, H. B., Ma, L. W. & Berg, K. (1998). Protoporphyrin IX accumulation in cells treated with 5-aminolevulinic acid: dependence on cell density, cell size and cell cycle. Int J Cancer 75: 134–139.

    Article  CAS  Google Scholar 

  • Momma, T., Hamblin, M. R. & Hasan, T. (1997). Hormonal modulation of the accumulation of 5-aminolevulinic acid-induced protoporphyrin and phototoxicity in prostate cancer cells. Int J Cancer 72: 1062–1069.

    Article  CAS  Google Scholar 

  • Peng, Q., Warloe, T., Berg, K., Moan, J., Kongshaug, M., Giecksky, K-E & Nesland, J. M. (1997). 5-Aminolevulinic acid-based photodynamic therapy. Cancer 79: 2282–2308.

    Article  CAS  Google Scholar 

  • Poulson, R. (1976). The enzymic conversion of protoporphyrinogen IX to protoporphyrin IX in mammalian mitochondria. J Biol Chem 251: 3730–3733.

    CAS  PubMed  Google Scholar 

  • Poulson, R. & Polglase, W. J. (1975). The enzymic conversion of protoporphyrinogen IX to protoporphyrin IX. J Biol Chem 250: 1269–1274.

    CAS  PubMed  Google Scholar 

  • Rebeiz, N., Rebeiz, C. C., Arkins, S., Kelley, K. W. & Rebeiz, C. A. (1992). Photodestruction of tumor cells by induction of endogenous accumulation of protoporphyrin IX: enhancement by 1,10-phenanthroline. Photochem Photobiol 55: 431–435.

    Article  CAS  Google Scholar 

  • Rittenhouse-Diakun, K., van Leengoed, H., Morgan, J., Hryhorenko, E., Paszkiewicz, G., Whitaker, J. E. & Oseroff, A. R. (1995). The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor δ-aminolevulinic acid (ALA). Photochem Photobiol 61: 523–528.

    Article  CAS  Google Scholar 

  • Sano, S. & Granick, S. (1961). Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem 236: 1173–1180.

    CAS  PubMed  Google Scholar 

  • Schick, E., Kaufmann, R., Rück, A., Hainzl, A. & Boehncke, W-H (1995). Influence of activation and differentiation of cells on the effectiveness of photodynamic therapy. Acta Derm Venereol 75: 276–279.

    CAS  PubMed  Google Scholar 

  • Schoenfeld, N., Epstein, O., Lahav, M., Mamer, R., Shaklai, M. & Atsmon, A. (1988). The heme biosynthetic pathway in lymphocytes of patients with malignant lymphoproliferative disorders. Cancer Lett 43: 43–48.

    Article  CAS  Google Scholar 

  • Steinbach, P., Weingandt, H., Baumgartner, R., Kriegmair, M., Hofstädter, F. & Knüchel, R. (1995). Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol 62: 887–895.

    Article  CAS  Google Scholar 

  • Tan, W. C., Krasner, N., O’Toole, P. & Lombard, M. (1997). Enhancement of photodynamic therapy in gastric cancer cells by removal of iron. Gut 41: 14–18.

    Article  CAS  Google Scholar 

  • Tsai, M. A., Waugh, R. E. & Keng, P. C. (1996). Cell cycle-dependence of HL-60 cell deformability. Biophys J 70: 2023–2029.

    Article  CAS  Google Scholar 

  • Vaupel, P., Kallinowski, F. & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449–6465.

    CAS  Google Scholar 

  • Wyld, L., Burn, J. L., Reed, M. W. R. & Brown, N. J. (1997). Factors affecting aminolaevulinic acid-induced generation of protoporphyrin IX. Br J Cancer 76: 705–712.

    Article  CAS  Google Scholar 

  • Wyld, L., Reed, M. W. R. & Brown, N. J. (1998). The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro. Br J Cancer 77: 1621–1627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, 14642, NY, USA

    I Georgakoudi, P C Keng & T H Foster

  2. University of Rochester Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, 14642, NY, USA

    P C Keng & T H Foster

  3. Department of Radiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, 14642, NY, USA

    T H Foster

  4. Department of Physics and Astronomy, University of Rochester, Rochester, 14627, NY, USA

    T H Foster

Authors
  1. I Georgakoudi
    View author publications

    Search author on:PubMed Google Scholar

  2. P C Keng
    View author publications

    Search author on:PubMed Google Scholar

  3. T H Foster
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Georgakoudi, I., Keng, P. & Foster, T. Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells. Br J Cancer 79, 1372–1377 (1999). https://doi.org/10.1038/sj.bjc.6690220

Download citation

  • Received: 29 April 1998

  • Revised: 24 July 1998

  • Accepted: 04 August 1998

  • Published: 26 February 1999

  • Issue date: 01 March 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690220

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • protoporphyrin IX
  • aminolaevulinic acid
  • hypoxia
  • cell density
  • proliferation rate

This article is cited by

  • Dormant cancer cells accumulate high protoporphyrin IX levels and are sensitive to 5-aminolevulinic acid-based photodynamic therapy

    • Taku Nakayama
    • Shimpei Otsuka
    • Shun-ichiro Ogura

    Scientific Reports (2016)

  • Selective 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in Gliomas

    • Ruichong Ma
    • Colin Watts

    Acta Neurochirurgica (2016)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited