Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
DT-diaphorase activity in NSCLC and SCLC cell lines: a role for fos/jun regulation
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 12 March 1999

DT-diaphorase activity in NSCLC and SCLC cell lines: a role for fos/jun regulation

  • J K Kepa1 &
  • D Ross1 

British Journal of Cancer volume 79, pages 1679–1684 (1999)Cite this article

  • 924 Accesses

  • 23 Citations

  • Metrics details

This article has been updated

Summary

To assess the potential differential lung tumour expression of NAD(P)H:quinone reductase (NQO1), the human (h) NQO1 promoter was characterized in gene transfer studies. A deletion panel of 5′ flanking hNQO1 promoter constructs was made and tested in transient transfection assays in NSCLC and SCLC cell lines. The largest hNQO1 construct (–1539/+115) containing the antioxidant response element (ARE), exhibited robust levels of reporter activity in the NSCLC (H460, H520, and A549) cell lines and expression was over 12 to 77-fold higher than the minimal (–259/+115) promoter construct. In contrast, there was little difference in promoter activity between the largest and minimal promoter construct in the SCLC (H146, H82 and H187) cell lines. Deletion of the sites for NFκB and AP-2 and the XRE did not significantly affect hNQO1 promoter activity in either the NSCLC or SCLC cell lines. Robust promoter activity in NSCLC lines was mediated by a 359 bp segment of the proximal promoter that contained a canonical AP-1 binding site, TGACTCAG, within the ARE. Gel supershift assays with various specific Fos/Jun antibodies identified Fra1, Fra2 and Jun B binding activity in NSCLC cells to a promoter fragment (–477 to –438) spanning the AP-1 site, whereas SCLC do not appear to express functional Fra or Jun B. These results suggest a possible role for AP-1 activity in the differential expression of hNQO1 in NSCLC.

Similar content being viewed by others

Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer

Article 04 July 2024

Differential expression of immune-regulatory proteins C5AR1, CLEC4A and NLRP3 on peripheral blood mononuclear cells in early-stage non-small cell lung cancer patients

Article Open access 02 November 2022

Long noncoding RNA SH3PXD2A-AS1 promotes NSCLC proliferation and accelerates cell cycle progression by interacting with DHX9

Article Open access 11 April 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Angel, P. & Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1072: 129–157.

    CAS  PubMed  Google Scholar 

  • Benson, A. M., Hunkeler, M. J. & Talalay, P. (1980). Increase of NAD(P)H: quinone reductase by dietary antioxidants. Possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77: 5216–5220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger, M. S., Talcott, R. E., Rosenblum, M. L., Silva, M., Ali-Osman, F. & Smith, M. (1985). The use of quinones in brain tumor chemotherapy. Preliminary results from preclinical investigations. J Toxicol Environ Health 16: 713–719.

    Article  CAS  PubMed  Google Scholar 

  • Bergers, G., Graninger, P., Braselmann, S., Wrighton, C. & Bussinger, M. (1995). Transcriptional activation of the Fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol Cell Biol 15: 3748–3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer, R. E., Segura-Aguilar, J., Lind, C. & Castro, V. M. (1987). DT-diaphorase activity in various cells in culture with emphasis on induction in ascites hepatoma cells. Chemica Scripta 27A: 145–150.

    CAS  Google Scholar 

  • Busslinger, M. & Bergers, G. (1994). Identification of AP-1 regulated genes. In The Fos and Jun Families of Transcription Factors, Angel PE and Herrlich PA (eds), pp. 133–150. CRC Press: Boca Raton, FL

  • Chiu, R., Angel, P. & Karin, M. (1989). JunB differs in its biological properties from, and is a negative regulator of cJun. Cell 59: 979–986.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, D. R. & Curran, T. (1988). Fra-1: a serum-inducible cellular immediate: early gene that encodes a fos-related antigen. Mol Cell Biol 8: 2063–2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens, L. M., Yokoyama, K. & Chiu, R. (1994). Transforming growth factor beta 1-mediated induction of JunB is selectively inhibited by expression of Ad. 12-E1a. J Cell Physiol 160: 435–444.

    Article  CAS  PubMed  Google Scholar 

  • DeLong, M. J., Prochaska, H. J. & Talalay, P. (1986). Induction of murine hepatoma cells by phenolic antioxidants, azo dyes and other chemoprotectors: a model system for the study of anticarcinogens. Proc Natl Acad Sci USA 83: 787–791.

    Article  CAS  Google Scholar 

  • Diccianni, M. B., Imagawa, M. & Muramatsu, M. (1992). The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP-1. Nucleic Acids Res 20: 5153–5158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dignam, J. D., Lebovitz, R. & Roeder, R. G. (1983). Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ephrussi, A., Church, A., Tonegawa, S. & Gilbert, W. (1985). β lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227: 134–140.

    Article  CAS  PubMed  Google Scholar 

  • Friling, R. S., Bergelson, S. & Daniel, V. (1992). Two adjacent AP-1 like binding sites form the electrophilic-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci USA 89: 668–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal, A. K. (1991). Human NAD(P)H:quinone oxidoreductase (NQO1) gene structure and induction by dioxin. Biochemistry 30: 10647–10653.

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal, A. K., McBride, O. W., Adesnik, M. & Nebert, D. W. (1988). Human dioxin inducible cytosolic NAD(P)H:menadione oxidoreductase. J Biol Chem 263: 13572–13578.

    CAS  PubMed  Google Scholar 

  • Joseph, P., Jaiswal, A. K., Stobbe, C. C. & Chapman, J. D. (1994). The role of specific reductases in the intracellular activation and binding of 2-nitroimidazoles. Int J Radiat Oncol Biol Phys 29: 351–355.

    Article  CAS  PubMed  Google Scholar 

  • Karin, M., Liu, Z. & Zandi, E. (1997). AP-1 function and regulation. Curr Opin Cell Biol 9: 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Kovary, K. & Bravo, R. (1992). Existence of different Fos/Jun complexes during the G0 to G1 transition and during exponential growth in mouse fibroblasts: differential role of Fos proteins. Mol Cell Biol 12: 5015–5023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. & Jaiswal, A. K. (1992). Regulation of human NAD(P)H:quinone reductase gene. Role of AP-1 binding site contained within human antioxidant response element. J Biol Chem 267: 15097–15104.

    CAS  PubMed  Google Scholar 

  • Li, Y. & Jaiswal, A. K. (1994). Human antioxidant response element regulation of type 1 NAD(P)H:quinone oxidoreductase gene expression. Eur J Biochem 226: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Malkinson, A. M., Siegel, D., Forrest, G. L., Gazdar, A. F., Oie, H. K., Chan, D. C., Bunn, P. A., Mabry, M., Dykes, D. J., Harrison, S. D. Jr & Ross, D. (1992). Elevated DT-diaphorase activity and messenger RNA content in human non-small cell lung carcinoma: relationship to the response of lung tumour xenografts to mitomycin C. Cancer Res 52: 4752–4757.

    CAS  PubMed  Google Scholar 

  • Milivojevic, B. K. & Gardner, D. G. (1992). Divergent regulation of the human atrial natriuretic peptide gene by c-jun and c-fos. Mol Cell Biol 12: 292–301.

    Article  Google Scholar 

  • Milivojevic, B. K. & Gardner, D. G. (1995). Fra-1, a Fos gene family member that activates atrial natriuretic peptide gene transcription. Hypertension 25: 679–682.

    Article  Google Scholar 

  • Prestera, T., Holtzclaw, W. D., Zhang, Y. & Talalay, P. (1993). Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 90: 2965–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryseck, R. P. & Bravo, R. (1991). cJun, Jun B, and Jun D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of Fos proteins. Oncogene 6: 533–542.

    CAS  PubMed  Google Scholar 

  • Schlager, J. J. & Powis, G. (1990). Cystolic NAD(P)H: (quinone acceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer 45: 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Shy, M. E., Shi, Y., Wrabetz, L., Kamholz, J. & Scherer, S. S. (1996). Axon–schwann cell interactions regulate the expression of c-jun in Schwann cells. J Neurosci Res 43: 511–525.

    Article  CAS  PubMed  Google Scholar 

  • Smitskamp-Wilms, E., Giaccone, G., Pinedo, H. M., Van der Laan, BFAM & Peters, G. J. (1995). DT-diaphorase activity in normal and neoplastic human tissues: an indicator for sensitivity to bioreductive agents. Br J Cancer 72: 917–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, T., Okuno, H., Yoshida, T., Endo, T., Nishina, H. & Iba, H. (1991). Differences in transcriptional regulatory function between cFos and Fra-2. Nucleic Acids Res 19: 5537–5542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo, E., Riffe, M. E., Steinberg, S. M., Birrer, M. J. & Linnoila, R. L. (1996). Altered cJun expression: an early event in human lung carcinogenesis. Cancer Res 56: 305–315.

    CAS  PubMed  Google Scholar 

  • Talalay, P. & Prochaska, H. J. (1987). Mechanisms of induction of NAD(P)H:quinone reductase. Chemica Scripta 27A: 61–66.

    CAS  Google Scholar 

  • Talalay, P., DeLong, M. J. & Prochaska, H. J. (1988). Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci USA 85: 8261–8265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traver, R. D., Siegel, D., Beall, H. D., Phillips, R. M., Gibson, N. W., Franklin, W. A. & Ross, D. (1997). Characterization of a polymorphism in NADP(H):quinone oxidoreductase (DT-diaphorase). Br J Cancer 75: 69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venugopal, R. & Jaiswal, A. K. (1996). Nrf1 and Nrf2 positively and cFos and Fra-1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone reductase 1gene. Proc Natl Acad Sci USA 93: 14960–14965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B. & Williamson, G. (1994). Detection of a nuclear protein which binds specifically to the antioxidant responsive element (ARE) of the human NAD(P)H:quinone oxidoreductase gene. Biochim Biophys Acta 1219: 645–652.

    Article  PubMed  Google Scholar 

  • Welter, J. F., Crish, J. F., Agarwal, C. & Eckert, R. L. (1995). Fos-related antigen (Fra-1), JunB and JunD activate human involucrin promoter transcription by binding to proximal and distal AP-1 sites to mediate phorbal ester effect on promoter activity. J Biol Chem 270: 12614–12622.

    Article  CAS  PubMed  Google Scholar 

  • Wisdom, R. & Verma, I. M. (1993). Transformation by Fos proteins requires a C-terminal transactivation domain. Mol Cell Biol 13: 7429–7438.

    Article  CAS  Google Scholar 

  • Xanthoudakis, S., Miao, G., Wang, F., Pan, Y. C. & Curran, T. (1992). Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11: 3323–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka, K., Deng, T., Cavigelli, M. & Karin, M. (1995). Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc Natl Acad Sci USA 92: 4972–4976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, School of Pharmacy and Cancer Center, University of Colorado Health Sciences Center, Denver, 80262, CO, USA

    J K Kepa & D Ross

Authors
  1. J K Kepa
    View author publications

    Search author on:PubMed Google Scholar

  2. D Ross
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Kepa, J., Ross, D. DT-diaphorase activity in NSCLC and SCLC cell lines: a role for fos/jun regulation. Br J Cancer 79, 1679–1684 (1999). https://doi.org/10.1038/sj.bjc.6690268

Download citation

  • Received: 20 April 1998

  • Revised: 06 August 1998

  • Accepted: 07 August 1998

  • Published: 12 March 1999

  • Issue date: 01 April 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690268

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NAD(P)H:quinone reductase
  • DT-diaphorase
  • fos/jun
  • NSCLC
  • SCLC

This article is cited by

  • Induction of p53-mediated senescence is essential for the eventual anticancer therapeutic effect of RH1

    • Joohee Jung
    • Do Young Song
    • Eun Kyung Choi

    Archives of Pharmacal Research (2019)

  • Phase 1 study of ARQ 761, a β-lapachone analogue that promotes NQO1-mediated programmed cancer cell necrosis

    • David E. Gerber
    • M. Shaalan Beg
    • David A. Boothman

    British Journal of Cancer (2018)

  • Effect of NQO1 induction on the antitumor activity of RH1 in human tumors in vitro and in vivo

    • Tyler Digby
    • Marsha K. Leith
    • Asher Begleiter

    Cancer Chemotherapy and Pharmacology (2005)

  • Dietary induction of NQO1 increases the antitumour activity of mitomycin C in human colon tumours in vivo

    • A Begleiter
    • M K Leith
    • T Digby

    British Journal of Cancer (2004)

  • Expression of the prodrug-activating enzyme DT-diaphorase via Ad5 delivery to human colon carcinoma cells in vitro

    • Veet Misra
    • Henry J Klamut
    • AM Rauth

    Cancer Gene Therapy (2002)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited