Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
The prognostic significance of allelic imbalance at key chromosomal loci in oral cancer
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 12 March 1999

The prognostic significance of allelic imbalance at key chromosomal loci in oral cancer

  • M Partridge1,
  • G Emilion1,
  • S Pateromichelakis1,
  • R A’Hern2,
  • G Lee1,
  • E Phillips1 &
  • …
  • J Langdon1 

British Journal of Cancer volume 79, pages 1821–1827 (1999)Cite this article

  • 600 Accesses

  • 37 Citations

  • Metrics details

This article has been updated

Summary

Forty-eight primary oral squamous cell carcinomas (SCC) were screened for allelic imbalance (AI) at 3p24–26, 3p21, 3p13, 8p21–23, 9p21, 9q22 and within the Rb, p53 and DCC tumour suppressor genes. AI was detected at all TNM stages with stage 4 tumours showing significantly more aberrations than stage 1–3. A factional allelic loss (FAL) score was calculated for all tumours and a high score was associated with development of local recurrence (P = 0.033) and reduced survival (P = 0.0006). AI at one or more loci within the 3p24–26, 3p21, 3p13 and 9p21 regions or within the THRB and DCC genes was associated with reduced survival. The hazard ratios for survival analysis revealed that patients with AI at 3p24–26, 3p13 and 9p21 have an approximately 25 times increase in their mortality rate relative to a patient retaining heterozygosity at these loci. AI at specific pairs of loci, D3S686 and D9S171 and involving at least two of D3S1296, DCC and D9S43, was a better predictor of prognosis than the FAL score or TNM stage. These data suggest that it will be possible to develop a molecular staging system which will be a better predict of outcome than conventional clinicopathological features as the molecular events represent fundamental biological characteristics of each tumour.

Similar content being viewed by others

A platform-independent AI tumor lineage and site (ATLAS) classifier

Article Open access 13 March 2024

The use of artificial intelligence models to predict survival in patients with laryngeal squamous cell carcinoma

Article Open access 15 June 2023

Clinical significance of the advanced lung cancer inflammation index in patients with limited-stage small cell lung cancer treated with chemoradiotherapy

Article Open access 06 May 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Ah-See, K. W., Cooke, T. G., Pickford, I. R., Soutar, D. & Balmain, A. (1994). An allelotype of squamous carcinoma of the head and neck using microsatellite markers. Cancer Res 54: 1617–1621.

    CAS  PubMed  Google Scholar 

  • Anneroth, G., Batsakis, J. & Luna, M. (1987). Review of the literature and a recommended system of malignancy grading in oral squamous cell carcinomas. Scand J Dental Res 95: 229–249.

    CAS  Google Scholar 

  • Brennan, J. A., Boyle, J. O., Koch, W., Goodman, S. N., Hruban, R. H., Eby, Y. J., Couch, M. J., Forastiere, A. A. & Sidransky, D. (1995). Association between cigarette smoking and mutation of the p53 gene in squamous cell carcinoma of the head and neck. N Engl J Med 332: 712–717.

    Article  CAS  PubMed  Google Scholar 

  • Califarno, J., van der Reit, P., Westra, W., Nawroz, H., Clayman, G., Piantadosi, S., Corio, R., Lee, D., Greenberg, B., Koch, W. & Sidransky, D. (1996). Genetic progression model for head and neck cancer: implications for field cancerisation. Cancer Res 56: 2488–2492.

    Google Scholar 

  • Cairns, P., Polascik, T. J., Eby, Y., Tokino, K., Califarno, J., Merlo, A., Mao, L., Herath, J., Jenkins, R., Westra, W., Rutter, J. L., Bucker, A., Gabrielson, E., Tockman, M., Cho, K. R., Hedrick, L., Bova, G. S., Isaacs, W., Koch, W., Schwab, D. & Sidransky, D. (1995). Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nature Genet 11: 210–212.

    Article  CAS  PubMed  Google Scholar 

  • Cox, D. R. (1972). Regression models and life tables (with discussion). J Roy Stat Soc B 34: 187–220.

    Google Scholar 

  • El-Naggar, A. K., Lee, M. S., Wang, G., Luna, M. A., Goepfert, H. & Batsakis, J. G. (1993). Polymerase chain reaction-based restriction length polymorphism analysis of the short arm of chromosome 3 in primary head and neck squamous cell carcinoma. Cancer 72: 881–886.

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar, A. K., Hurr, K., Batsakis, J. G., Luna, M. A., Goepfert, H. & Huff, V. (1995). Sequential loss of heterozygosity at microsatellite motifs in preinvasive head and neck squamous carcinoma. Cancer Res 55: 2656–2659.

    CAS  PubMed  Google Scholar 

  • Field, J. K., Tsiiriytos, C. & Zoumpourlis, V. (1994). Allele loss on chromosome 3 in squamous cell carcinoma of the head and neck correlates with poor clinical prognostic indicators. Int J Oncol 4: 543–549.

    CAS  PubMed  Google Scholar 

  • Field, J. K., Kiaris, H., Tsiriyotis, C., Adamson, R., Zoumpourlis, V., Rowley, H., Taylor, K., Whittaker, J., Howard, P., Beirne, J. C., Gosney, J. R., Woolgar, J., Vaughan, E. D., Spandidos, D. A. & Jones, A. S. (1995). Allelotype of squamous cell carcinoma of the head and neck: fractional allelic loss correlated with survival. Br J Cancer 72: 1180–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank, C. J., McClatchey, K. D., Davaney, K. O. & Carey, T. E. (1997). Evidence that loss of chromosome 18q is associated with tumour progression. Cancer Res 57: 824–827.

    CAS  PubMed  Google Scholar 

  • Hermanek, P. & Sobin, L. (1987). UICC TNM Classification of Malignant Tumours, 3rd edn. Spinger-Verlag: Berlin

  • Ishwad, C. S., Ferrell, R. E., Rossie, K. M., Appel, B. N., Johnson, J. T. & Myers, E. N. (1996). Loss of heterozygosity of the short arm of chromosomes 3 and 9 in oral cancer. Int J Cancer 69: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P. A. & Buckley, T. D. (1990). The role of DNA methylation in cancer. Adv Cancer Res 54: 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Kelker, W., van Dyke, D. L., Worsham, M., Christopherson, P. L., James, C. D., Conlon, M. R. & Carey, T. E. (1996). Loss of 18 and homozygosity for the DCC locus: possible markers for clinically aggressive squamous cell carcinoma. Anticancer Res 16: 2363–2371.

    Google Scholar 

  • Kemp, C. J., Donehower, L. A., Bradley, A. & Balmain, A. (1993). Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumours. Cell 74: 813–822.

    Article  CAS  PubMed  Google Scholar 

  • Kerangueven, F., Toguchida, T., Coulier, F., Allione, F., Wargniez, V., Simony-Lafontaine, J., Longy, M., Jacquemier, J., Sobol, H., Eisinger, F. & Birnbaum, D. (1997). Genome-wide search for loss of heterozygosity shows extensive genetic diversity of human breast carcinomas. Cancer Res 57: 5469–5474.

    CAS  PubMed  Google Scholar 

  • Kiaris, H., Jones, A. S., Spandidos, D. A., Vaughan, E. D. & Field, J. K. (1994). Loss of heterozygosity on chromosome 8 in squamous cell carcinomas of the head and neck. Int J Oncol 5: 1243–1248.

    CAS  PubMed  Google Scholar 

  • Kim, S. K., Fan, Y., Papadimitrakopoulou, V., Clayman, G., Hittelman, W. N., Hong WK Lotan, R. & Mao, L. (1996). DPC4, a candidate tumour suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res 56: 2519–2521.

    CAS  PubMed  Google Scholar 

  • Kim, S. K., Ro, J. Y., Kemp, B. L., Lee, S. J., Kwoon, T. J., Fong, K. M., Sekido, Y., Minna, J. D., Hong, W. K. & Mao, L. (1997). Identification of three distinct tumour suppressor gene loci on the short arm of chromosome 9 in small cell lung cancer. Cancer Res 52: 400–403.

    Google Scholar 

  • Langdon, J. D. & Henk, J. M. (1995). Classification and staging. In Malignant Tumours of the Mouth, Jaws and Salivary Glands, Langdon JD and Henk JM (eds), pp. 36–49. Edward Arnold: London

  • Largey, J. S., Meltzer, S. J., Yin, J., Norris, K., Sauk, J. J. & Archibald, D. W. (1993). Loss of heterozygosity of p53 in oral cancers demonstrated by the polymerase chain reaction. Cancer 71: 1933–1937.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D. L., Koch, W. M., Yoo, G., Lango, M., Reed, A., Califarno, J., Brennan, J. A., Westra, W. H., Zahurak, M. & Sidransky, D. (1997). Impact of chromosome 14q loss on survival in primary head and neck squamous cell carcinoma. Clin Cancer Res 3: 501–505.

    CAS  PubMed  Google Scholar 

  • Lee, N. K., Ye, Y. W., Li, X., Schweitzer, C. & Nisen, P. D. (1994). Allelic loss on chromosome 13 can proceed histological changes in head and neck cancer. Int J Oncol 5: 205–210.

    CAS  PubMed  Google Scholar 

  • Li, Y-Q, Pavelic, Z. P., Wang, L-J, McDonald, J. S., Gleich, L., Munck-Wikland, E., Dacic, S., Danilovic, Z., Pavelic, L. J., Wilson, K. M., Gluckman, J. L. & Stambrook, P. J. (1995). Altered p53 in microdissected, metachronous, premalignant and malignant oral lesions from the same patients. J Clin Pathol (Clin Mol Pathol) 48: M269–M272.

    Article  CAS  Google Scholar 

  • Lydiatt, W. M., Davidson, B. J., Schantz, S. P., Caruana, S. & Chaganti, R. S. K. (1998). 9p21 deletion correlates with recurrence in head and neck cancer. Head Neck 20: 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Maestro, R., Piccinin, S., Doglioni, C., Gasparotto, D., Vukosavljevic, G., Sulfaro, S., Barzan, L. & Boiocchi, M. (1996). Chromosome 13q deletion mapping in head and neck squamous cell carcinomas: identification of two distinct regions of preferential loss. Cancer Res 56: 1146–1150.

    CAS  PubMed  Google Scholar 

  • Mao, L., Fan, J. S., Ro, J. Y., Batsakis, J. G., Lippman, S., Hittelman, W. & Hong, W. K. (1996). Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nature Med 2: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Min, B. M., Baek, J. H., Shin, K. H., Gujuluva, C. N., Cherrick, H. M. & Park, N. H. (1994). Inactivation of the p53 gene by either mutation of HPV infection is extremely frequent in human oral squamous cell carcinoma cell lines. Eur J Cancer B Oral Oncology 5: 338–435.

    Article  Google Scholar 

  • Nawroz, H., van der Reit, P., Hruban, R. H., Koch, W., Rupert, J. M. & Sidransky, D. (1994). Allelotype of head and neck squamous cal carcinoma. Cancer Res 54: 1152–1155.

    CAS  PubMed  Google Scholar 

  • Neville, E. M., Stewart, M., Myskow, M., Donnelly, R. J. & Field, J. K. (1995). Loss of heterozygosity at 9p23 defines a novel locus in non small cell lung cancer. Oncogene 11: 581–585.

    CAS  PubMed  Google Scholar 

  • Nylander, K., Schildt, E. B., Eriksson, M., Magnusson, A., Mehle, C. & Roos, G. (1996). A non-random deletion in the p53 gene in oral squamous cell carcinoma. Br J Cancer 73: 1381–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge, M., Kiguwa, S. & Langdon, J. D. (1994). Frequent deletion of chromosome 3p in oral squamous cell carcinoma. Eur J Cancer B Oral Oncol 30B: 248–251.

    Article  CAS  PubMed  Google Scholar 

  • Partridge, M., Emilion, G. & Langdon, J. D. (1996). LOH at 3p correlates with a poor survival in oral squamous cell carcinoma. Br J Cancer 73: 366–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley, H., Jones, A. S. & Field, J. K. (1995). Chromosome 18: a possible site for a tumour suppressor gene deletion in squamous cell carcinoma of the head and neck. Clin Otolaryngol 20: 266–277.

    Article  CAS  PubMed  Google Scholar 

  • Sekido, Y., Lader, S., Latif, F., Chen, J-Y, Duh, F-M, Wei, M-H, Albanesi, J. P., Lee, C-C, Lerman, M. I. & Minna, J. D. (1996). Human semaphorins A(v) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci USA 93: 4120–4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiro, R. H., Huvos, A. G., Wong, G. Y., Spiro, J. D., Gnecco, C. A. & Strong, E. W. (1986). Predictive thickness in squamous carcinoma confined to the tongue and floor of mouth. Am J Surg 152: 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Tobe, T. & Ishizaki, K. (1993). Loss of 17p, mutation of the p53 gene, and overexpression of the p53 protein in oesophageal squamous cell carcinoma. Cancer Res 53: 846–850.

    PubMed  Google Scholar 

  • Todd, S., Franklin, W. A., Varella-Garcia, M., Kennedy, T., Hiliker, C. E., Hahner, L., Anderson, M., Weist, J. S., Drabkin, H. A. & Gemmil, R. M. (1997). Homozygous deletions of human chromosome 3p in lung tumours. Cancer Res 57: 1344–1352.

    CAS  PubMed  Google Scholar 

  • van der Reit, P., Nawroz, H., Hruban, R. H., Corio, R., Tokino, K., Koch, W. & Sidransky, D. (1994). Frequent loss of chromosome 9p21–22 in head and neck cancer progression. Cancer Res 54: 1156–1158.

    Google Scholar 

  • van Dyke, D. L., Worsham, M. J., Benninger, M. S., Krause, C. J., Baker, S. R., Wolf, G. T., Drumheller, T., Tilley, B. C. & Carey, T. E. (1994). Recurrent cytogenetic abnormalities in squamous cell carcinomas of the head and neck region. Genes Chromosom Cancer: 9: 192–206.

    Article  CAS  Google Scholar 

  • Vogelstein, B., Fearnon, E. R., Kern, S., Hamilton, S. R., Preisinger, A. C., Nakamura, Y. & White, R. (1989). Allelotype of colorectal carcinomas. Science 244: 207–211.

    Article  CAS  PubMed  Google Scholar 

  • Wagata, T., Shibagaki, I., Imamura, M., Shimada, Y., Toguchida, J., Yandell, D. W., Ikenaga, M., Wistuba, I. I., Montellano, F. D. & Milchgrub, S. (1993). Deletions of chromosome 3p are frequent early events in the pathogenesis of uterine cervical carcinoma. Cancer Res 57: 3154–3158.

    Google Scholar 

  • Weist, J. S., Franklin, J. T., Otstot, J. T., Forbey, K., Varella-Gracia, M., Rao, K., Drabkin, H., Gemmil, R., Ahrendt, S., Sidransky, D., Saccomanno, G., Fountain, J. W. & Anderson, W. W. (1997). Identification of a novel region of homozygous deletion on chromosome 9p in squamous cell carcinoma of the lung: the location of a putative tumour suppressor gene. Cancer Res 57: 1–6.

    Google Scholar 

  • Wu, C. L., Sloan, P., Read, A. P., Harris, R. H. & Thakkar, N. S. (1994). Deletion mapping on the short arm of chromosome 3 in oral squamous cell carcinoma of the oral cavity. Cancer Res 54: 6484–6488.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Maxillofacial Unit, Kings College School of Medicine and Dentistry, Denmark Hill, London, SE5 8RX, UK

    M Partridge, G Emilion, S Pateromichelakis, G Lee, E Phillips & J Langdon

  2. Royal Marsden NHS Trust, Fulham Road, London, SW3 6JJ, UK

    R A’Hern

Authors
  1. M Partridge
    View author publications

    Search author on:PubMed Google Scholar

  2. G Emilion
    View author publications

    Search author on:PubMed Google Scholar

  3. S Pateromichelakis
    View author publications

    Search author on:PubMed Google Scholar

  4. R A’Hern
    View author publications

    Search author on:PubMed Google Scholar

  5. G Lee
    View author publications

    Search author on:PubMed Google Scholar

  6. E Phillips
    View author publications

    Search author on:PubMed Google Scholar

  7. J Langdon
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Partridge, M., Emilion, G., Pateromichelakis, S. et al. The prognostic significance of allelic imbalance at key chromosomal loci in oral cancer. Br J Cancer 79, 1821–1827 (1999). https://doi.org/10.1038/sj.bjc.6990290

Download citation

  • Received: 01 May 1998

  • Revised: 04 September 1998

  • Accepted: 11 September 1998

  • Published: 12 March 1999

  • Issue date: 01 April 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6990290

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • oral cancer
  • chromosome deletions
  • genes
  • suppressor
  • loss of heterozygosity

This article is cited by

  • Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss

    • Andrew M Gross
    • Ryan K Orosco
    • Trey Ideker

    Nature Genetics (2014)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited