Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Evaluation of the effects of photodynamic therapy with phosphorus 31 magnetic resonance spectroscopy
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 26 March 1999

Evaluation of the effects of photodynamic therapy with phosphorus 31 magnetic resonance spectroscopy

  • M Nishiwaki1,3,
  • Y Fujise2,
  • T O Yoshida1 nAff6,
  • E Matsuzawa4 &
  • …
  • Y Nishiwaki5 

British Journal of Cancer volume 80, pages 133–141 (1999)Cite this article

  • 615 Accesses

  • 6 Citations

  • Metrics details

This article has been updated

Abstract

Magnetic resonance spectroscopy in situ was used to study changes in phosphorus 31 metabolism after photodynamic therapy (PDT) of transplanted HeLa cell tumours. Tumours were irradiated 2 h after administration of ATX-S10 (8-formyloximethylidene-7-hydroxy-3-ethenyl-2,7,12,18, tetramethyl-porphyrin-13,17-bispropionil aspartate), a new photosensitizer and chlorin derivative. Nuclear magnetic resonance spectra were measured prior to illumination and 1, 3, 7, 14, 21 and 28 days after PDT on each mouse. A drastic decrease in adenosine triphosphate (ATP) and a concomitant increase in inorganic phosphate (Pi) were evident on the first day after PDT in all cases. The β-ATP/total phosphate (P) ratio was 0.64 ± 0.29% (average ± s.d.) in complete response, 0.67 ± 0.30% in recurrence and 2.45 ± 0.93% in partial response. Comparison of this ratio to the histological findings revealed that the β-ATP/total P ratio reflects the HeLa cell tumours which survived PDT. In other words, partial response on the one hand was distinguished from complete response and recurrence on the other with this ratio 1 day after PDT (P < 0.05). In addition, the ratio of phosphomonoester (PME) to Pi rose beyond 1.0 when macroscopic recurrence occurred, while it stayed under 1.0 in complete response. This finding suggests that the recurrence of HeLa cell tumours can be detected by the PME/Pi ratio.

Similar content being viewed by others

Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid

Article Open access 16 December 2020

Sonodynamic therapy in combination with photodynamic therapy shows enhanced long-term cure of brain tumor

Article Open access 11 December 2020

Pre-clinical investigation of astatine-211-parthanatine for high-risk neuroblastoma

Article Open access 17 November 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Bremner, J. C. M., Bradley, J. K., Stratford, I. J. & Adams, G. E. (1994) Magnetic resonance spectroscopic studies on ‘real-time’ changes in RIF-1 tumor metabolism and blood flow during and after photodynamic therapy. Br J Cancer 69: 1083–1087.

    Article  CAS  Google Scholar 

  • Ceckler, T. L., Bryant, R. G., Penny, D. P., Cibson, S. L. & Hilf, R. (1986) 31P NMR spectroscopy demonstrates decreased ATP levels in vivo as an early response to photodynamic therapy. Biochem Biophys Res Commun 140: 273–279.

    Article  CAS  Google Scholar 

  • Ceckler, T. L., Gigson, S. L., Kennedy, S. D., Hilf, R. & Bryant, R. G. (1991) Heterogeneous tumor response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy. Br J Cancer 63: 916–922.

    Article  CAS  Google Scholar 

  • Chapman, J. D., McPhee, M. S., Walz, N., Chemer, M. P., Stobbe, C. C., Soderlind, K., Arnfield, M., Meeker, B. E., Trimble, L. & Allen, P. S. (1991) Nuclear magnetic resonance spectroscopy and sensitizer-adduct measurements of photodynamic therapy-induced ischemia in solid tumors. J Natl Cancer Inst 83: 1650–1659.

    Article  CAS  Google Scholar 

  • Chopp, M., Farmer, H., Hetzel, F. & Schaap, A. P. (1987) In vivo 31P NMR spectroscopy of mammary carcinoma subjected to subcurative photodynamic therapy. Photochem Photobiol 46: 819–822.

    Article  CAS  Google Scholar 

  • Chopp, M., Hetzel, F. W. & Jiang, Q. (1990) Dose-dependent metabolic response of mammary carcinoma to photodynamic therapy. Radiation Res 121: 288–294.

    Article  CAS  Google Scholar 

  • Daly, P. F. & Cohen, J. S. (1989) Magnetic resonance spectroscopy of tumors and potential in vivo clinical application: a review. Cancer Res 49: 770–779.

    CAS  PubMed  Google Scholar 

  • Daly, P. F., Lyon, R. C., Faustino, P. J. & Cohen, J. S. (1987) Phospholipid metabolism in cancer cells monitored by 31P NMR spectroscopy. J Biolog Chem 262: 14875–14878.

    CAS  Google Scholar 

  • Dewhirst, M. W., Sostman, H. D., Leopold, K. A., Charles, H. C., Moor, D., Burn, R. A., Tucker, J. A., Harrelson, J. M. & Oleson, J. R. (1990) Soft-tissue sarcomas; MR imaging and MR spectroscopy for prognosis and therapy monitoring. Radiology 174: 847–853.

    Article  CAS  Google Scholar 

  • Evanochko, W. T., Ng, T. C., Glickson, J. D., Durant, J. R. & Corbett, T. H. (1982) Human tumors as examined by in vivo 31P NMR in athymic mice. Biochem Biophs Res Commun 109: 1346–1352.

    Article  CAS  Google Scholar 

  • Fisher, A. M. R., Murphree, A. L. & Gomer, C. J. (1995) Clinical and preclinical photodynamic therapy. Lasers Surg Med 17: 2–31.

    Article  CAS  Google Scholar 

  • Foote, C. S. (1990) Chemical mechanisms of photodynamic action. In Proc. SPIE Institute on Advanced Optical Technologies on Photodynamic Therapy. SPIE 6: 115–126.

    Google Scholar 

  • Gibson, S. L. & Hilf, R. (1983) Photosensitization of mitochondrial cytochrome c oxidase by hematoporphyrin derivative and related porphyrins in vitro and in vivo. Cancer Res 43: 4191–4197.

    CAS  PubMed  Google Scholar 

  • Gibson, S. L., Murant, R. S. & Hilf, R. (1988) Photosensitizing effect of hematoporphyrine derivative and photofrin II on the plasma membrane enzymes 5´-nucleotidase, Na+ K+ -ATPase, and Mg2+ -ATP ase in R3230 AC mammary adenocarcinomas. Cancer Res 48: 3360–3366.

    CAS  PubMed  Google Scholar 

  • Hashimoto, Y. & Sakata, I. (1994) Photodynamic therapy for transplantable human esophageal cancer (ES4) of nude mice with excimer dye laser and ATX-S10. J Jpn Society Laser Med 15: 1–7.

    Google Scholar 

  • Hayashi, Y., Yoshida, T. O., Nishiwaki, M., Matsuzawa, E., Yicheng, L. & Ohta, I. (1998). Effective mechanisms of ATX-S10, a new photosensitizer, against HeLa tumors in nude mice. Jpn J Chemother (in press)

  • Henderson, B. W. & Dougherty, T. J. (1992) How does photodynamic therapy work?. Photochem Photobiol 55: 145–157.

    Article  CAS  Google Scholar 

  • Hilf, R., Smail, D. B., Murant, R. S., Leakey, P. B. & Gibson, S. L. (1984) Hematoporphyrine derivative-induced photosensitivity of mitochondrial succinate dehydrogenase and selected cytosolic enzymes of R3230AC mammary adenocarcinomas of rat. Cancer Res 44: 1483–1488.

    CAS  PubMed  Google Scholar 

  • Hilf, R., Murant, R. S., Narayanan, U. & Gibson, S. L. (1986) Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced photosensitization in R3230AC mammary tumors. Cancer Res 46: 211–217.

    CAS  PubMed  Google Scholar 

  • Hilf, R., Penney, D. P., Ceckler, T. L. & Bryant, R. G. (1987) Early biochemical responses to photodynamic therapy monitored by NMR spectroscopy. Photochem Photobiol 46: 809–817.

    Article  CAS  Google Scholar 

  • Hua, Z., Gibson, S. L., Foster, T. H. & Hilf, R. (1995) Effectiveness of δ-aminolevulinic acid-induced protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Cancer Res 55: 1723–1731.

    CAS  PubMed  Google Scholar 

  • Kato, H. (1996) History of photodynamic therapy: past, present, and future. Jpn J Chemother 23: 8–15.

    CAS  Google Scholar 

  • Mattiello, J., Evelhoch, L., Brown, E., Schaap, A. P. & Hetzel, F. W. (1990) Effect of photodynamic therapy on RIF-1 tumor metabolism and blood flow examined by 31P and 2H NMR spectroscopy. NMR Biomed 3: 64–70.

    Article  CAS  Google Scholar 

  • Nakajima, S., Hayashi, H., Sakata, I. & Takemura, T. (1993) New photosensitizer- ATX-S10-having type 1 photoreaction. Igaku no Ayumi 164: 187–188.

    CAS  Google Scholar 

  • Naruse, S., Horikawa, Y., Tanaka, C., Higashi, T., Sekimoto, H., Ueda, S. & Hirakawa, K. (1986) Evaluation of the effects of photoradiation therapy on brain tumors with in vivo 31P MR spectroscopy. Radiology 160: 827–830.

    Article  CAS  Google Scholar 

  • Negendank, W. (1992) Studies of human tumors by MRS: a review. NMR Biomed 5: 303–324.

    Article  CAS  Google Scholar 

  • Ng, T. C., Evanochko, W. T., Hiramoto, R. N., Ghanta, V. K., Durant, J. R. & Glickson, J. D. (1982) 31P NMR spectroscopy of in vivo tumors. J Mag Res 49: 271–286.

    CAS  Google Scholar 

  • Perlin, D. S., Murant, R. S., Gibson, S. L. & Hilf, R. (1985) Effects of photosensitization by hematoporphyrin derivative on mitochondrial adenosine triphosphate-mediated proton transport and membrane integrity of R3230AC mammary adenocarcinomas. Cancer Res 45: 653–658.

    CAS  PubMed  Google Scholar 

  • Steen, R. G. (1989) Response of solid tumors to chemotherapy monitored by in vivo 31P nuclear magnetic resonance spectroscopy: a review. Cancer Res 49: 4075–4085.

    CAS  PubMed  Google Scholar 

  • Takemura, T., Nakajima, S. & Sakata, I. (1993) Photophysicochemical properties of photosensitizer ATX-70, ATX-S10 and fluorescent diagnostic agent HAT-D01. J Jpn Society Laser Med 14: 21–29.

    Google Scholar 

  • Weishaupt, K. R., Gomer, C. J. & Dougherty, T. J. (1976) Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of murine tumor. Cancer Res 36: 2326–2329.

    CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. T O Yoshida

    Present address: Department of Microbiology and Immunology, Showa University School of Medicine, 1-8-5 Hatanodai Shinagawa, Tokyo, 142, Japan

Authors and Affiliations

  1. Departments of Microbiology and Immunology, Hamamatsu University School of Medicine, 3600 Handa-cho Hamamatsu, 431-3192, Japan

    M Nishiwaki & T O Yoshida

  2. Departments of Chemistry, Hamamatsu University School of Medicine, 3600 Handa-cho Hamamatsu, 431-3192, Japan

    Y Fujise

  3. Second Department of Internal Medicine, Hamamatsu University School of Medicine, 3600 Handa-cho Hamamatsu, 431-3192, Japan

    M Nishiwaki

  4. Hamamatsu Photonics KK, 812 Joko-cho Hamamatsu, Japan

    E Matsuzawa

  5. Hamamatsu Medical Center, 328 Tomitsuka-cho, Hamamatsu, 432, Japan

    Y Nishiwaki

Authors
  1. M Nishiwaki
    View author publications

    Search author on:PubMed Google Scholar

  2. Y Fujise
    View author publications

    Search author on:PubMed Google Scholar

  3. T O Yoshida
    View author publications

    Search author on:PubMed Google Scholar

  4. E Matsuzawa
    View author publications

    Search author on:PubMed Google Scholar

  5. Y Nishiwaki
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Nishiwaki, M., Fujise, Y., Yoshida, T. et al. Evaluation of the effects of photodynamic therapy with phosphorus 31 magnetic resonance spectroscopy. Br J Cancer 80, 133–141 (1999). https://doi.org/10.1038/sj.bjc.6690332

Download citation

  • Received: 28 May 1998

  • Revised: 04 October 1998

  • Accepted: 21 October 1998

  • Published: 26 March 1999

  • Issue date: 01 April 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690332

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • photodynamic therapy (PDT)
  • phosphorus 31 magnetic resonance spectroscopy (31P MRS)
  • YAG-optical parametric oscillator laser (YAG-OPO laser)
  • ATX-S10
  • HeLa cell tumour
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited