Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 26 March 1999

Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response

  • E Reyes1,
  • I García-Castro2,
  • F Esquivel1,
  • J Hornedo2,
  • H Cortes-Funes2,
  • J Solovera3 &
  • …
  • M Alvarez-Mon1 

British Journal of Cancer volume 80, pages 229–235 (1999)Cite this article

  • 3624 Accesses

  • 32 Citations

  • 6 Altmetric

  • Metrics details

This article has been updated

Abstract

Granulocyte colony-stimulation factor (G-CSF) is a cytokine that selectively promotes growth and maturation of neutrophils and may modulate the cytokine response to inflammatory stimuli. The purpose of this study was to examine the effect of G-CSF on ex vivo peripheral blood mononuclear cell (PBMC) functions. Ten patients with breast cancer were included in a clinical trial in which r-metHuG-CSF was administrered daily for 5 days to mobilize peripheral blood stem cells. Ten healthy women were also included as controls. Our data show that G-CSF treatment induces an increase in peripheral blood leucocyte, neutrophil, lymphocyte and monocyte counts. We have found a modulation in the percentages of CD19+, CD45+CD14+, CD4+CD45RA+ and CD4+CD45RO+ cells in PBMC fractions during G-CSF treatment. We have also found a significant reduction in the proliferative response of PBMC to mitogenic stimulation that reverted 14 days after the fifth and the last dose of G-CSF. Furthermore, it was not associated with significant changes in the pattern of cytokine production. The mechanism of this immunoregulatory effect is probably indirect since G-CSF receptor has not been found in T lymphocytes. This mechanism and its potential clinical applications remain to be elucidated.

Similar content being viewed by others

Effect of granulocyte colony-stimulating factor on toxicities after CAR T cell therapy for lymphoma and myeloma

Article Open access 01 November 2022

An open-label pilot study of recombinant granulocyte-colony stimulating factor in Friedreich’s ataxia

Article Open access 09 August 2022

Decoding lymphomyeloid divergence and immune hyporesponsiveness in G-CSF-primed human bone marrow by single-cell RNA-seq

Article Open access 22 June 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Aoki, Y., Hiromatsu, K., Kobayashi, N., Hotta, T. & Saito, H. (1995) Protective effect of granulocyte colony-stimulating factor against T-cell mediated lethal shock triggered by superantigens. Blood 86: 1420–1427.

    CAS  PubMed  Google Scholar 

  • Avalos, B. (1996) Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood 88: 761–777.

    CAS  PubMed  Google Scholar 

  • Bensinger, W. I., Weaver, C. H., Appelbaum, F. R., Rowley, S., Demirer, T., Sanders, J., Storb, R. & Buckner, C. D. (1995) Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 85: 1655–1658.

    CAS  PubMed  Google Scholar 

  • Boyum, A. J. (1968) Isolation of mononuclear cell and granulocytes from human blood. Scan J Clin Lab Invest 21: 77–89.

    Article  CAS  Google Scholar 

  • Bronchud, M. H., Scarffe, J. H., Thatcher, N., Crowther, D., Souza, L. M., Alton, N. K., Testa, N. G. & Dexter, T. M. (1987) Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer 56: 809–813.

    Article  CAS  Google Scholar 

  • Buttke, T. M. & Sandstrom, P. A. (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15: 7–10.

    Article  CAS  Google Scholar 

  • Dale, D. C., Liles, C., Summer, W. R. & Nelson, S. (1995) Review: Granulocyte colony-stimulating factor-role and relationship in infection diseases. J Infect Dis 172: 1061–1075.

    Article  CAS  Google Scholar 

  • De Jong, R., Brouwer, M., Miedema, F. & Van Lier, R. A. W. (1991) Human CD8+ T lymphocytes can be divided into CD45RA+ and CD45RO+ cells with different requirements for activation and differentiation. J Immunol 146: 2088–2093.

    CAS  PubMed  Google Scholar 

  • Dmetri, G. D. & Griffin, J. D. (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78: 2791–2808.

    Google Scholar 

  • Gorgen, I., Hartung, T., Leist, M., Niehorster, M. & Tiegs, G. (1992) Granulocyte colony-stimulating factor treatment protects rodents against lipopolysaccharide-induced toxicity via suppression of systemic tumor necrosis factor a. J Immunol 149: 918–924.

    CAS  PubMed  Google Scholar 

  • Green, J. M. & Thompson, C. B. (1994) Modulation of T cell proliferative response by accessory cell interactions. Immunol Res 13: 234–243.

    Article  CAS  Google Scholar 

  • Hartung, T., Docke, W. D., Gantner, F., Krieger, G., Sauer, A., Stevens, P., Volk, H. D. & Wendel, A. (1995) Effect of granulocyte colony-stimulating factor treatment on ex vivo blood cytokine response in human volunteers. Blood 85: 2482–2489.

    CAS  PubMed  Google Scholar 

  • Kuhns, D. B., Alvord, W. G. & Gallin, J. I. (1995) Increased circulating cytokines, cytokine antagonists, and E-selectin after intravenous administration of endotoxin in humans. J Infect Dis 171: 145–152.

    Article  CAS  Google Scholar 

  • Lieschke, G. J. & Burgess, A. W. (1992) Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. N Engl J Med 327: 99–106.

    Article  CAS  Google Scholar 

  • Molineux, G., Podja, Z., Hampson, I., Lord, B. & Dexter, T. (1990) Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 76: 2153–2158.

    CAS  PubMed  Google Scholar 

  • Nakagomi, H., Pisa, P., Pisa, E. K., Yamamoto, Y., Halapi, E., Backlin, K., Juhlin, C. & Kiessling, R. (1995) Lack of interleukin-2 (IL-2) expression and selective expression of IL-10 mRNA in human renal cell carcinoma. Int J Cancer 63: 366–371.

    Article  CAS  Google Scholar 

  • Naparstek, E. (1996) Granulocyte colony-stimulating factor, congenital neutropenia, and acute myeloid leukemia. N Engl J Med 333: 516–518.

    Article  Google Scholar 

  • Pan, L., Delmonte, J. Jr, Jalonen, C. K. & Ferrara, J. L. (1995) Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 86: 4422–4429.

    CAS  PubMed  Google Scholar 

  • Parnes, J. R. (1982) Molecular biology and function of CD4 and CD8. Adv Immunol 44: 265–312.

    Article  Google Scholar 

  • Pollmacher, T., Korth, C., Mullington, J., Schreiber, W., Sauer, J., Vedder, H., Galanos, C. & Holsboer, F. (1996) Effects of granulocyte colony-stimulating factor on plasma cytokine and cytokine receptor levels and on the in vivo host response to endotoxin in healthy men. Blood 87: 900–905.

    CAS  PubMed  Google Scholar 

  • Roe, T. F., Coates, T. D., Thomas, D. W., Miller, J. H. & Gilsanz, V. (1992) Brief report: treatment of chronic inflammatory bowel disease in glycogen storage disease type Ib with colony-stimulating factors. N Engl J Med 326: 1666–1669.

    Article  CAS  Google Scholar 

  • Roilides, E., Walsh, T., Pizzo, P. A. & Rubin, M. (1991) Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis 163: 579–583.

    Article  CAS  Google Scholar 

  • Roman, L. I., Manzano, L., De la Hera, A., Abreu, L., Rossi, I. & Alverez-Mon, M. (1996) Expanded CD4+CD45RO+ phenotype and defective proliferative response in T lymphocytes from patients with Crohn’s disease. Gastroenterology 110: 1008–1019.

    Article  CAS  Google Scholar 

  • Schmitz, N., Dreger, P., Suttorp, M., Rohwedder, E. B., Haferlach, T., Loffler, H., Hunter, A. & Russell, N. H. (1995) Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 85: 1666–1672.

    CAS  PubMed  Google Scholar 

  • Shimoda, K., Okamura, S., Harada, N. & Niho, Y. (1992) Detection of the granulocyte colony-stimulating factor receptor using biotinylated granulocyte colony-stimulating factor: presence of granulocyte colony-stimulating factor receptor on CD34-positive hematopoietic progenitor cells. Res Exp Med 192: 245–255.

    Article  CAS  Google Scholar 

  • Sica, S., Rutella, S., Di Mario, A., Salutari, P., Rumi, C., Ortu la Barbera, E., Etuk, B., Menichella, G., D’Onofrio, G. & Leone, G. (1996) rhG-CSF in healthy donors: mobilization of peripheral hemopoietic progenitors and effect on peripheral blood leukocytes. J Hemother 5: 391–397.

    Article  CAS  Google Scholar 

  • Sullivan, G. W., Carper, H. T. & Mandell, G. L. (1993) The effect of three human recombinant hematopoietic growth factors (granulocyte-macrophage colony-stimulating factor; granulocyte colony-stimulating factor, and interleukin-3) on phagocyte oxidative activity. Blood 81: 1863–1870.

    CAS  PubMed  Google Scholar 

  • Szamel, M., Leufgen, H., Kurrle, R. & Resch, K. (1995) Differential signal transduction pathways regulating interleukin-2 sysnthesis and interleukin-2 receptor expression in stimulated human lymphocytes. Biochim Biophys Acta 1235: 33–42.

    Article  Google Scholar 

  • Terashima, T., Soejima, K., Waki, Y., Nakamura, H., Fujishima, S., Suzuki, Y., Ishizaka, A. & Kanazawa, M. (1995) Neutrophils activated by granulocyte colony-stimulating factor suppress tumor necrosis factor-alpha release from monocytes stimulated by endotoxin. Am J Respir Cell Mol Biol 13: 69–73.

    Article  CAS  Google Scholar 

  • Tsuji, T., Nagata, K., Koike, J., Todoroki, N. & Irimura, T. (1994) Induction of superoxide anion production from monocytes an neutrophils by activated platelets through the P-selectin-sialyl Lewis X interaction. J Leukoc Biol 56: 583–587.

    Article  CAS  Google Scholar 

  • Vechiarelli, A., Monari, C., Baldelli, F., Pietrella, D. & Retini, C. (1995) Beneficial effect of recombinant human granulocyte colony-stimulating factor on fungicidal activity of polymorphonuclear leukocytes from patients with AIDS. J Infect Dis 171: 1448–1454.

    Article  Google Scholar 

  • Welte, K., Gabrilove, J., Bronchud, M., Platzer, E. & Morstyn, G. (1996) Filgrastim (r.-metHuG-CSF): the first 10 years. Blood 88: 1907–1929.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Medicine ‘Principe de Asturias’ University Hospital, Medicine/Immune System Diseases Oncology Service, Alcalá University, Carretera Madrid-Barcelona, Km 33.600, Alcalá de Henares, Madrid, 28871, Spain

    E Reyes, F Esquivel & M Alvarez-Mon

  2. Medical Oncology Department, ‘12 de Octubre’ University Hospital, Madrid, Spain

    I García-Castro, J Hornedo & H Cortes-Funes

  3. Amgen, S.A, Barcelona, Spain

    J Solovera

Authors
  1. E Reyes
    View author publications

    Search author on:PubMed Google Scholar

  2. I García-Castro
    View author publications

    Search author on:PubMed Google Scholar

  3. F Esquivel
    View author publications

    Search author on:PubMed Google Scholar

  4. J Hornedo
    View author publications

    Search author on:PubMed Google Scholar

  5. H Cortes-Funes
    View author publications

    Search author on:PubMed Google Scholar

  6. J Solovera
    View author publications

    Search author on:PubMed Google Scholar

  7. M Alvarez-Mon
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Reyes, E., García-Castro, I., Esquivel, F. et al. Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response. Br J Cancer 80, 229–235 (1999). https://doi.org/10.1038/sj.bjc.6690344

Download citation

  • Received: 12 February 1998

  • Revised: 30 July 1998

  • Accepted: 09 September 1998

  • Published: 26 March 1999

  • Issue date: 01 April 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690344

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • G-CSF
  • breast cancer
  • autologous peripheral blood transplantation
  • T lymphocytes

This article is cited by

  • G-CSF mobilized vs conventional donor lymphocytes for therapy of relapse or incomplete engraftment after allogeneic hematopoietic transplantation

    • K K S Abbi
    • J Zhu
    • D Claxton

    Bone Marrow Transplantation (2013)

  • Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation

    • M Mohty
    • K Bilger
    • D Blaise

    Leukemia (2003)

  • Differential effects of G-CSF mobilisation on dendritic cell subsets in normal allogeneic donors and patients undergoing autologous transplantation

    • BD Hock
    • LF Haring
    • JL McKenzie

    Bone Marrow Transplantation (2002)

  • Collection of hematopoietic stem cells from patients with autoimmune diseases

    • RK Burt
    • A Fassas
    • PA McSweeney

    Bone Marrow Transplantation (2001)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited