Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Non-autocrine, constitutive activation of Met in human anaplastic thyroid carcinoma cells in culture
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 23 April 1999

Non-autocrine, constitutive activation of Met in human anaplastic thyroid carcinoma cells in culture

  • J D Bergström1,
  • A Hermansson1,
  • T Diaz de Ståhl1 &
  • …
  • N-E Heldin1 

British Journal of Cancer volume 80, pages 650–656 (1999)Cite this article

  • 632 Accesses

  • 24 Citations

  • Metrics details

This article has been updated

Summary

Activation of Met by its ligand HGF has been shown to elicit both mitogenic and motogenic responses in thyrocytes in vitro. In the present study we have investigated the expression of Met in human anaplastic thyroid carcinoma cells in culture. There was a variation in expression level and size of Met in the different cell lines; high Met expression was found in four cell lines, compared to non-neoplastic human thyrocytes. Treatment with glucoproteinase F showed that the size differences observed were due to variances in the degree of glycosylation. Interestingly, in cell lines with high expression of Met, the receptor proteins were found to be constitutively tyrosine phosphorylated. None of these cell lines expressed HGF mRNA, and addition of suramin did not affect the level of tyrosine phosphorylation of Met in unstimulated cells, suggesting the absence of autocrine stimulatory pathways. Furthermore, we did not observe MET gene amplification, activating mutations or phosphatase defects. The tyrosine phosphorylated receptors appeared functionally active since the receptors associated with the adaptor molecule Shc. In summary, we have found ligand-independent constitutively activated Met in four out of six anaplastic thyroid carcinoma cell lines.

Similar content being viewed by others

Adding pieces to the puzzle of differentiated-to-anaplastic thyroid cancer evolution: the oncogene E2F7

Article Open access 10 February 2023

Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis

Article Open access 01 December 2021

Thyroid hormones inhibit tumor progression and enhance the antitumor activity of lenvatinib in hepatocellular carcinoma via reprogramming glucose metabolism

Article Open access 08 March 2025

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Adams, J. C., Furlong, R. A. & Watt, F. M. (1991). Production of scatter factor by ndk, a strain of epithelial cells, and inhibition of scatter factor activity by suramin. J Cell Sci 98: 385–394.

    PubMed  Google Scholar 

  • Ain, K. B. & Taylor, K. D. (1994). Somatostatin analogs affects proliferation of human thyroid carcinoma cell lines in vitro. J Clin Endocrinol Metab 78: 1097–1102.

    CAS  PubMed  Google Scholar 

  • Auffray, C. & Rougeon, F. (1980). Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem 107: 303–314.

    Article  CAS  Google Scholar 

  • Bardelli, A., Maina, F., Gout, I., Fry, M. J., Waterfield, M. D., Comoglio, P. M. & Ponzetto, C. (1992). Autophosphorylation promotes complex formation of recombinant hepatocyte growth factor receptor with cytoplasmic effectors containing SH2 domains. Oncogene 7: 1973–1978.

    CAS  PubMed  Google Scholar 

  • Bardelli, A., Ponzetto, C. & Comoglio, P. M. (1994). Identification of functional domains in the hepatocyte growth factor and its receptor by molecular engineering. J Biotechnol 37: 109–122.

    Article  CAS  Google Scholar 

  • Bottaro, D. P., Rubin, J. S., Faletto, D. L., Chan, AM-L, Kmiecik, T. E., Vande Woude, G. F. & Aaronson, S. A. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251: 802–804.

    Article  CAS  Google Scholar 

  • Börset, M., Lien, E., Espevik, T., Helseth, E., Waage, A. & Sundan, A. (1996). Concomitant expression of hepatocyte growth factor/scatter factor and its receptor in human myeloma cell lines. J Biol Chem 271: 24655–24661.

    Article  Google Scholar 

  • Carlsson, J., Nilsson, K., Westermark, B., Pontén, J., Sundström, C., Larsson, E., Bergh, J., Påhlman, S., Busch, C. & Collins, V. P. (1983). Formation and growth of multicellular spheroids of human origin. Int J Cancer 31: 523–533.

    Article  CAS  Google Scholar 

  • Carcangiu, M. L., Steeper, T., Zampi, G. & Rosai, J. (1985). Anaplastic thyroid carcinoma. A study of 70 cases. Am J Clin Pathol 83: 135–158.

    Article  CAS  Google Scholar 

  • de Juan, C., Sánchez, A., Nakamura, T., Fabregat, I. & Benito, M. (1994). Hepatocyte growth factor up-regulates met expression in rat fetal hepatocytes in primary culture. Biochem Biophys Res Commun 204: 1364–1370.

    Article  CAS  Google Scholar 

  • Di Renzo, M. F., Narsimhan, R. P., Olivero, M., Bretti, S., Giordano, S., Medico, E., Gaglio, P., Zara, P. & Comoglio, P. M. (1991). Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 6: 1997–2003.

    CAS  PubMed  Google Scholar 

  • Di Renzo, M. F., Olivero, M., Ferro, S., Prat, M., Bongarzone, I., Pilotti, S., Belfiore, A., Costantino, A., Vigneri, R., Pierotti, M. A. & Comoglio, P. M. (1992). Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 7: 2549–2553.

    CAS  PubMed  Google Scholar 

  • Di Renzo, M. F., Olivero, M., Katsaros, D., Crepaldi, T., Gaglia, P., Zola, P., Sismondi, P. & Comoglio, P. M. (1994). Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 58: 658–662.

    Article  CAS  Google Scholar 

  • Di Renzo, M. F., Poulsom, R., Olivero, M., Comoglio, P. M. & Lemoine, N. R. (1995a). Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 55: 1129–1138.

    CAS  PubMed  Google Scholar 

  • Di Renzo, M. F., Olivero, M., Serini, G., Orlandi, F., Pilotti, S., Belfiori, A., Costantino, A., Vigneri, R., Angeli, A., Pierotti, M. A. & Comoglio, P. M. (1995b). Overexpression of the c-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. J Endocrinol Invest 18: 134–139.

    Article  CAS  Google Scholar 

  • Dremier, S., Taton, M., Coulonval, K., Nakamura, T., Matsumoto, K. & Dumont, J. E. (1994). Mitogenic, de-differentiating, and scattering effects of hepatocyte growth factor on dog thyroid cells. Endocrinology 135: 135–140.

    Article  CAS  Google Scholar 

  • Eccles, N., Ivan, M. & Wynford-Thomas, D. (1996). Mitogenic stimulation of normal and oncogene-transformed human thyroid epithelial cells by hepatocyte growth factor. Mol Cell Endocrinol 117: 247–251.

    Article  CAS  Google Scholar 

  • Ferracini, R., Di Renzo, M. F., Scotlandi, K., Baldini, N., Olivero, M., Lollini, P. L., Cremona, O., Campanacci, M. & Comoglio, P. M. (1995). The Met/HGF paracrine or an autocrine circuit. Oncogene 10: 739–749.

    CAS  PubMed  Google Scholar 

  • Fixman, E. D., Fournier, T. M., Kamikura, D. M., Naujokas, M. A. & Park, M. (1996). Pathways downstream of Shc and Grb2 are required for cell transformation by the Tpr–Met oncoprotein. J Biol Chem 271: 13116–13122.

    Article  CAS  Google Scholar 

  • Gambarotta, G., Boccacio, C., Giordano, S., Ando, M., Stella, M. C. & Comoglio, P. M. (1996). Ets up-regulates MET transcription. Oncogene 13: 1911–1917.

    CAS  PubMed  Google Scholar 

  • Giordano, S., Di Renzo, M. F., Narsimhan, R. P., Cooper, C. S., Rosa, C. & Comoglio, P. M. (1989). Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene 4: 1383–1388.

    CAS  PubMed  Google Scholar 

  • Heldin, N-E & Westermark, B. (1988). Epidermal growth factor, but not thyrotropin, stimulates the expression of c-fos and c-myc messenger ribonucleic acid in porcine thyroid follicle cells in primary culture. Endocrinology 122: 1042–1046.

    Article  CAS  Google Scholar 

  • Heldin, N-E, Cvejic, D., Smeds, S. & Westermark, B. (1991). Coexpression of functionally active receptors for thyrotopin and platelet derived growth factor in human thyroid carcinoma cells. Endocrinology 129: 2187–2193.

    Article  CAS  Google Scholar 

  • Heldin, N-E, Gustavsson, B., Claesson-Welsh, L., Hammacher, A., Mark, J., Heldin, C-H & Westermark, B. (1988). Aberrant expression of receptors for platelet derived growth factor in an anaplastic thyroid carcinoma cell line. Proc Natl Acad Sci USA 85: 9302–9306.

    Article  CAS  Google Scholar 

  • Higashio, K., Shima, N., Goto, M., Itagaki, Y., Nagao, M., Yasuda, H. & Morinaga, T. (1990). Identity of a tumor cytotoxic factor from human fibroblasts and hepatocyte growth factor. Bichem Biophys Res Commun 170: 397–404.

    Article  CAS  Google Scholar 

  • Ivan, M., Bond, J. A., Prat, M., Comoglio, P. M. & Wynford-Thomas, D. (1997). Activated ras and ret oncogenes induce overexpression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 14: 2417–2423.

    Article  CAS  Google Scholar 

  • Jeffers, M., Schmidt, L., Nakaigawa, N., Webb, C. P., Weirich, G., Kishida, T., Zbar, B. & Vande Woude, G. F. (1997). Activating mutations for the Met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 94: 11445–11450.

    Article  CAS  Google Scholar 

  • Longati, P., Bardelli, A., Ponzetto, C., Naldini, L. & Comoglio, P. M. (1994). Tyrosines1234–1235 are critical for the activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor). Oncogene 9: 49–57.

    CAS  PubMed  Google Scholar 

  • Naldini, L., Weidner, K. M., Vigna, E., Guadino, G., Bardelli, A., Ponzetto, C., Narsimham, R. P., Hartmann, G., Zarnegar, R., Michalopoulos, G. K., Birchmeier, W. & Comoglio, P. M. (1991). Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 10: 2867–2878.

    Article  CAS  Google Scholar 

  • Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K. & Shimizu, S. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature 342: 440–443.

    Article  CAS  Google Scholar 

  • Ponzetto, C., Bardelli, A., Zhen, Z., Maina, F., dalla Zonca, P., Giordano, S., Graziani, A., Panayotou, G. & Comoglio, P. M. (1994). A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77: 261–271.

    Article  CAS  Google Scholar 

  • Ponzetto, C., Giordano, S., Peverali, F., Della Valle, G., Abate, M., Vaula, G. & Comoglio, P. M. (1991). c-met is amplified but not mutated in a cell line with an activated met tyrosine kinase. Oncogene 6: 553–559.

    CAS  PubMed  Google Scholar 

  • Prat, M., Narsimhan, R., Crepaldi, T., Nicotra, R., Natali, P. G. & Comoglio, P. M. (1991). The receptor encoded by the human c-met oncogene is expressed in hepatocytes, epithelial cells and solid tumors. Int J Cancer 49: 323–328.

    Article  CAS  Google Scholar 

  • Rong, S., Bodescot, M., Blair, D., Dunn, J., Nakamura, T., Mizuno, K., Park, M., Chan, A., Aaronson, S. & Vande Woude, G. F. (1992). Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol Cell Biol 12: 5152–5158.

    Article  CAS  Google Scholar 

  • Rong, S., Segal, S., Anver, M., Resau, J. H. & Vande Woude, G. F. (1994). Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci USA 91: 4731–4735.

    Article  CAS  Google Scholar 

  • Rubin, J. S., Chan, A. M., Bottaro, D. P., Burgess, W. H., Taylor, W. G., Cech, A. C., Hirschfield, D. W., Wong, J., Miki, T., Finch, P. W. & Aaronsson, S. A. (1991). A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc Natl Acad Sci USA 88: 415–419.

    Article  CAS  Google Scholar 

  • Rusciano, D., Lorenzoni, P. & Burger, M. M. (1996). Constitutive activation of c-Met in liver metastatic B16 melanoma cells depends on both substrate adhesion and cell density and is regulated by a cytosolic tyrosine phosphatase activity. J Biol Chem 271: 20763–20769.

    Article  CAS  Google Scholar 

  • Santoro, M., Carlomagno, F., Romano, A., Bottaro, D. P., Dathan, N. A., Grieco, M., Fusco, A., Vecchio, G., Matoskova, B., Kraus, M. H. & Di Fiore, P. P. (1995). Activation of Ret as a dominant transforming gene by germline mutations of MEN 2A and MEN 2B. Science 267: 381–383.

    Article  CAS  Google Scholar 

  • Schmidt, L., Duh, F. M., Chen, F., Kishida, T., Glenn, G., Choyke, P., Scherer, S. W., Zhuang, Z., Lubensky, I., Dean, M., Allikmets, R., Chidambaram, A., Bergerheim, U. R., Feltis, J. T., Casadevall, C., Zamarron, A., Bernues, M., Richard, S., Lips, C. J., Walther, M. M., Tsui, L. C., Geil, L., Orcutt, M. L., Stackhouse, T., Lipan, J., Slife, L., Brauch, H., Decker, J., Niehans, G., Hughson, M. D., Moch, H., Storkel, S., Lerman, M. I., Linehan, W. M. & Zbar, B. (1997). Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16: 68–73.

    Article  CAS  Google Scholar 

  • Scotlandi, K., Baldini, N., Oliviero, M., Di Renzo, M. F., Martana, M., Manara, M. C., Comoglio, P. M. & Ferracini, R. (1996). Expression of Met/hepatocyte growth factor receptor gene and malignant behavior of musculoskeletal tumors. Am J Pathol 149: 1209–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoker, M., Gherardi, E. & Gray, J. (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327: 239–242.

    Article  CAS  Google Scholar 

  • Tsao, M-S, Zhu, H., Giaid, A., Viallet, J., Nakamura, T. & Park, M. (1993). Hepatocyte growth factor/scatter factor is an autocrine factor for human normal bronchial epithelial and lung carcinoma cells. Cell Growth & Diff 4: 571–579.

    CAS  Google Scholar 

  • Tso, J. Y., Sun, X. H., Kao, T., Reece, K. S. & Wu, R. (1985). Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res 13: 2485–2502.

    Article  CAS  Google Scholar 

  • Tuck, A. B., Park, M., Sterns, E. E., Boag, A. & Elliott, B. E. (1996). Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148: 225–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villa-Moruzzi, E., Lapi, S., Prat, M., Gaudino, G. & Comoglio, P. M. (1993). A protein tyrosine phosphatase activity associated with the hepatocyte growth factor/scatter factor receptor. J Biol Chem 268: 18176–18180.

    CAS  PubMed  Google Scholar 

  • Weidner, K. M., Arakaki, N., Hartmann, G., Vandekerckhove, J., Weingart, S., Rieder, H., Fonatsch, C., Tsubouchi, H., Hishida, T., Daikuhara, Y. & Birchmeier, W. (1991). Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 88: 7001–7005.

    Article  CAS  Google Scholar 

  • Weidner, K. M., Di Cesare, S., Sachs, M., Brinkmann, V., Behrens, J. & Birchmeier, W. (1996). Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384: 173–176.

    Article  CAS  Google Scholar 

  • Westermark, K., Karlsson, F. A. & Westermark, B. (1983). Epidermal growth factor modulates thyroid growth and function in culture. Endocrinology 112: 1680–1686.

    Article  CAS  Google Scholar 

  • Zarnegar, R. & Michalopoulos, G. K. (1995). The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol 129: 1177–1180.

    Article  CAS  Google Scholar 

  • Zarnegar, R., Muga, S., Rahija, R. & Michalopoulos, G. (1990). Tissue distribution of hepatopoietin-A: a heparin-binding polypeptide growth factor for hepatocytes. Proc Natl Acad Sci USA 87: 1252–1256.

    Article  CAS  Google Scholar 

  • Zhen, Z., Giordano, S., Longati, P., Medico, E., Campiglio, M. & Comoglio, P. M. (1994). Structural and functional domains critical for constitutive activation of the HGF-receptor. Oncogene 9: 1691–1697.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Genetics and Pathology, Unit of Pathology, University Hospital, Uppsala, S-751 85, Sweden

    J D Bergström, A Hermansson, T Diaz de Ståhl & N-E Heldin

Authors
  1. J D Bergström
    View author publications

    Search author on:PubMed Google Scholar

  2. A Hermansson
    View author publications

    Search author on:PubMed Google Scholar

  3. T Diaz de Ståhl
    View author publications

    Search author on:PubMed Google Scholar

  4. N-E Heldin
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Bergström, J., Hermansson, A., Ståhl, T. et al. Non-autocrine, constitutive activation of Met in human anaplastic thyroid carcinoma cells in culture. Br J Cancer 80, 650–656 (1999). https://doi.org/10.1038/sj.bjc.6690406

Download citation

  • Received: 17 April 1998

  • Revised: 20 October 1998

  • Accepted: 23 December 1998

  • Published: 23 April 1999

  • Issue date: 01 May 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690406

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Met
  • thyroid
  • anaplastic carcinoma
  • receptor activation

This article is cited by

  • Planning for Intracavitary Anti-EGFR Radionuclide Therapy of Gliomas. Literature Review and Data on EGFR Expression

    • Carlsson J
    • Ren Z.P
    • Nistér M

    Journal of Neuro-Oncology (2006)

  • Tyrosine kinase inhibitor STI571 enhances thyroid cancer cell motile response to Hepatocyte Growth Factor

    • Francesco Frasca
    • Paolo Vigneri
    • Jean Y J Wang

    Oncogene (2001)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited