Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Ceramide triggers p53-dependent apoptosis in genetically defined fibrosarcoma tumour cells
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 23 April 1999

Ceramide triggers p53-dependent apoptosis in genetically defined fibrosarcoma tumour cells

  • M Pruschy1,
  • H Resch1,
  • Y-Q Shi1,
  • N Aalame1,
  • C Glanzmann1 &
  • …
  • S Bodis1 

British Journal of Cancer volume 80, pages 693–698 (1999)Cite this article

  • 744 Accesses

  • 23 Citations

  • Metrics details

This article has been updated

Summary

p53 mutations are among the most common genetic alterations in human cancer and are frequently described in intrinsic or acquired radio- and chemotherapy resistance. Radiation-induced cell kill is not only mediated by DNA damage but also by the activation of signal transduction cascades generated at the plasma membrane like the sphingomyelin pathway. We used genetically defined wild-type p53 or p53-deficient mouse fibrosarcoma cells to investigate the p53-dependence of tumour response upon activation of the sphingomyelin pathway. Treatment of the tumour cells with neutral sphingomyelinase drastically reduced the amount of wild-type p53 fibrosarcoma cell proliferation over 72 h in a clear dose–response (0.2–1.0 U ml−1 nSMase). Sphingomyelinase had no effect on cell proliferation in tumour cells lacking p53. Similarly, cell proliferation was abolished by C2-ceramide (5–20 μM) only in wild-type p53 cells. FACS-analysis revealed that C2-ceramide induced massive p53-dependent apoptosis (40–50% after 12–24 h) and cell cycle analysis showed a transient G1 arrest in p53-deficient tumour cells 12–24 h after C2-ceramide exposure. These results suggest that ceramide-induced apoptosis in tumour cells can be dependent on the status of p53 and imply that p53 is also important for stress-induced apoptotic signal transduction cascades generated at the plasma membrane.

Similar content being viewed by others

SMARCA4 deficient tumours are vulnerable to KDM6A/UTX and KDM6B/JMJD3 blockade

Article Open access 14 July 2021

Evolutionary determinants of curability in cancer

Article 24 August 2023

Experimental models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor

Article 28 February 2022

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Alesse, E., Zazzeroni, F., Angelucci, A., Giannini, G., Di Marcotullio, L. & Gulino, A. (1998). The growth arrest and downregulation of c-myc transcription induced by ceramide are related events dependent on p21 induction, Rb underphosphorylation and E2F sequestering. Cell Death Diff 5: 381–389.

    Article  CAS  Google Scholar 

  • Amarante-Mendes, G. P., Naekyung Kim, C., Liu, L., Huang, Y., Perkins, C. L., Green, D. R. & Bhalla, K. (1998). Bcr-abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 91: 1700–1705.

    CAS  PubMed  Google Scholar 

  • Chinnaiyan, A. M., Orth, K., O’Rourke, K., Duan, H., Poirier, G. G. & Dixit, V. M. (1996). Molecular ordering of the cell death pathway: Bcl-2 and Bcl-xL function upstream of the CED-3 like apoptotic proteases. J Biol Chem 271: 4573–4576.

    Article  CAS  Google Scholar 

  • Chmura, S. J., Nodzenski, E., Beckett, M. A., Kufe, D. W., Quintans, J. & Weichselbaum, R. R. (1997). Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res 57: 1270–1275.

    CAS  PubMed  Google Scholar 

  • Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L. & Wyllie, A. H. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852.

    Article  CAS  Google Scholar 

  • Darzynkiewic, Z. (1995). In Cell Growth and Apoptosis, Sudzinski GP. Oxford University Press: Oxford

    Google Scholar 

  • Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. & Greenberg, M. E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.

    Article  CAS  Google Scholar 

  • Fisher, D. E. (1994). Apoptosis in cancer therapy: crossing the threshold. Cell 78: 539–542.

    Article  CAS  Google Scholar 

  • Haimovitz-Friedman, A., Kan, C. C., Ehleiter, D., Persaud, R. S., McLouglin, M., Fuks, Z. & Kolesnick, R. N. (1994). Ionizing radiation acts on cellular membranes to generate ceramide and induce apoptosis. J Exp Med 180: 525–535.

    Article  CAS  Google Scholar 

  • Haimovitz-Friedman, A., Kolesnick, R. N. & Fuks, Z. (1997). Ceramide signaling in apoptosis. Br Med Bull 53: 539–553.

    Article  CAS  Google Scholar 

  • Hannun, Y. A. & Linardic, C. M. (1993). Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1154: 223–236.

    Article  CAS  Google Scholar 

  • Hannun, Y. H. (1997). Apoptosis and the dilemma of cancer chemotherapy. Blood 89: 1845–1853.

    CAS  PubMed  Google Scholar 

  • Harris, C. C. (1996). Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 88: 1442–1455.

    Article  CAS  Google Scholar 

  • Herr, I., Wilhelm, D., Böhler, T., Angel, P. & Debatin, K. M. (1997). Activation of CD95 (Apo-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J 16: 6200–6208.

    Article  CAS  Google Scholar 

  • Jacks, T., Remington, L., Williams, B., Schmitt, E., Halachmi, S., Bronson, R. & Weinberg, R. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  Google Scholar 

  • Jarvis, W. D., Kolesnick, R. N., Fornari, F. A., Traylor, R. S., Gewirtz, D. A. & Grant, S. (1994). Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci USA 91: 73–77.

    Article  CAS  Google Scholar 

  • Jarvis, W. D., Grant, S. & Kolesnick, R. N. (1996). Ceramide and the induction of apoptosis. Clin Cancer Res 2: 1–6.

    CAS  PubMed  Google Scholar 

  • Jayadev, S., Liu, B., Bielawska, A. E., Lee, J. Y., Nazaire, F., Pushkareva, M. Y., Obeid, L. M. & Hannun, Y. A. (1995). Role for ceramide in cell cycle arrest. J Biol Chem 270: 2047–2052.

    Article  CAS  Google Scholar 

  • Kinscherf, R., Claus, R., Wagner, M., Gehrke, C., Kamencic, H., Hou, D., Nauen, O., Schmiedt, W., Kovacs, G., Pill, J., Metz, J. & Deigner, H. P. (1998). Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J 12: 461–467.

    Article  CAS  Google Scholar 

  • Kuroki, J., Hirokawa, M., Kitabayashi, A., Lee, M., Horiuchi, T., Kawabata, Y. & Miura, A. B. (1996). Cell permeable ceramide inhibits the growth of B lymphoma Raji cells lacking TNF-alpha-receptors by inducing G0/G1 arrest but not apoptosis: a new model for dissecting cell-cycle arrest and apoptosis. Leukemia 10: 1950–1958.

    CAS  PubMed  Google Scholar 

  • Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. (1993a). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849.

    Article  CAS  Google Scholar 

  • Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. (1993b). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967.

    Article  CAS  Google Scholar 

  • Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E. & Jacks, T. (1994a). p53 can determine the efficacy of cancer therapy in vivo. Science 266: 807–810.

    Article  CAS  Google Scholar 

  • Lowe, S. W., Jacks, T., Housman, D. E. & Ruley, H. E. (1994b). Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 91: 2026–2030.

    Article  CAS  Google Scholar 

  • Maity, A., Kao, G. D., Mische, R. J. & McKenna, W. G. (1997). Potential molecular targets for manipulating the radiation response. Int J Radiat Oncol Biol Phys 37: 639–653.

    Article  CAS  Google Scholar 

  • Miyashita, T. & Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    Article  CAS  Google Scholar 

  • Obeid, L. N., Linardic, C. M., Karolak, L. A. & Hannun, Y. A. (1993). Programmed cell death induced by ceramide. Science 259: 1769–1771.

    Article  CAS  Google Scholar 

  • Ruley, H. E. (1996). In Important Advances in Oncology, DeVita VT, Hellmann S and Rosenberg SA (eds). Lippincott: Philadelphia

    Google Scholar 

  • Santana, P., Pena, L. A., Haimovitz-Friedman, A., McLoughlin, M., Cordon-Carlo, C., Schuchman, E. H., Fuks, Z. & Kolesnick, R. (1996). Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–199.

    Article  CAS  Google Scholar 

  • Suzumiel, I. (1994). Review: Ionizing radiation-induced cell death. Int J Radiat Oncol Biol Phys 66: 329–341.

    Article  Google Scholar 

  • Tsuchida, E. & Urano, M. (1997). The effect of UCN-01 (7-hydroxystaurosporine), a potent inhibitor of protein kinase C, on fractionated radiotherapy or daily chemotherapy of a murine fibrosarcoma. Int J Radiat Oncol Biol Phys 39: 1153–1161.

    Article  CAS  Google Scholar 

  • Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zon, I., Kyriakis, J. M., Haimovitz-Friedman, A., Fuks, Z. & Kolesnick, R. N. (1996). Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380: 75–79.

    Article  CAS  Google Scholar 

  • Wyllie, A. H. (1993). Apoptosis (The Frank Rose Memorial Lecture). Br J Cancer 67: 205–208.

    Article  CAS  Google Scholar 

  • Zhou, H., Summers, S. A., Birnbaum, M. J. & Pittman, R. N. (1998). Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 27: 16568–16575.

    Article  Google Scholar 

  • Zundel, W. & Giaccia, A. (1998). Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev 12: 1941–1946.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Radiation Oncology, Molecular Radiobiology Laboratory, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland

    M Pruschy, H Resch, Y-Q Shi, N Aalame, C Glanzmann & S Bodis

Authors
  1. M Pruschy
    View author publications

    Search author on:PubMed Google Scholar

  2. H Resch
    View author publications

    Search author on:PubMed Google Scholar

  3. Y-Q Shi
    View author publications

    Search author on:PubMed Google Scholar

  4. N Aalame
    View author publications

    Search author on:PubMed Google Scholar

  5. C Glanzmann
    View author publications

    Search author on:PubMed Google Scholar

  6. S Bodis
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Pruschy, M., Resch, H., Shi, YQ. et al. Ceramide triggers p53-dependent apoptosis in genetically defined fibrosarcoma tumour cells. Br J Cancer 80, 693–698 (1999). https://doi.org/10.1038/sj.bjc.6690411

Download citation

  • Received: 26 August 1998

  • Revised: 10 November 1998

  • Accepted: 11 November 1998

  • Published: 23 April 1999

  • Issue date: 01 May 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690411

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • p53
  • ceramide
  • sphingomyelin pathway
  • radiation therapy

This article is cited by

  • P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest

    • A A Shamseddine
    • C J Clarke
    • Y A Hannun

    Cell Death & Disease (2015)

  • Tumor suppressive functions of ceramide: evidence and mechanisms

    • Sehamuddin Galadari
    • Anees Rahman
    • Faisal Thayyullathil

    Apoptosis (2015)

  • Ceramide-orchestrated signalling in cancer cells

    • Samy A. F. Morad
    • Myles C. Cabot

    Nature Reviews Cancer (2013)

  • Defining a role for sphingosine kinase 1 in p53-dependent tumors

    • L A Heffernan-Stroud
    • K L Helke
    • L M Obeid

    Oncogene (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited