Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 23 April 1999

Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts

  • M A Konerding1,
  • W Malkusch2,
  • B Klapthor1,
  • C van Ackern1,
  • E Fait1,
  • S A Hill3,
  • C Parkins3,
  • D J Chaplin3,
  • M Presta4 &
  • …
  • J Denekamp5 

British Journal of Cancer volume 80, pages 724–732 (1999)Cite this article

  • 1976 Accesses

  • 178 Citations

  • Metrics details

This article has been updated

Summary

The vascular architecture of four different tumour cell lines (CaX, CaNT, SaS, HEC-1B) transplanted subcutaneously in mice was examined by means of microvascular corrosion casting in order to determine whether there is a characteristic vascular pattern for different tumour types and whether it differs significantly from two normal tissues, muscle and gut. Three-dimensional reconstructed scanning electron microscope images were used for quantitative measurements. Vessel diameters, intervessel and interbranch distances showed large differences between tumour types, whereas the branching angles were similar. In all tumours, the variability of the vessel diameters was significantly higher than in normal tissue. The quantitative data provide strong evidence for a characteristic vascular network determined by the tumour cells themselves.

Similar content being viewed by others

Targeting the tumour vasculature: from vessel destruction to promotion

Article 29 August 2024

The development of tumour vascular networks

Article Open access 22 September 2021

Vascular normalisation as the stepping stone into tumour microenvironment transformation

Article Open access 07 April 2021

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Algire, G. H. (1943). Microscopic studies of the early growth of a transplantable melanoma of the mouse using the transparent chamber technique. J Natl Cancer Inst 4: 13–22.

    Google Scholar 

  • Bicknell, R. (1994). Vascular targeting and the inhibition of angiogenesis. Ann Oncol 5: 45–50.

    Article  Google Scholar 

  • Davidson, S. E., Ngan, R., Wilks, D. P., Moore, J. V. & West, C. M. (1994). A comparison of four methods for assessing tumor vascularity in carcinoma of the cervix. Int J Oncol 5: 639–645.

    CAS  PubMed  Google Scholar 

  • Denekamp, J. (1984). Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol 23: 217–225.

    Article  CAS  Google Scholar 

  • Endrich, B. & Vaupel, P. (1998). The role of the microcirculation in the treatment of malignant tumors: facts and fiction. Morphological aspects of tumor angiogenesis and microcirculation. In Blood Perfusion and Microenvironment of Human Tumors, Implications for Clinical Radiooncology Molls M and Vaupel P, (eds), pp. 19–40. Springer: Berlin

    Google Scholar 

  • Falk, P. (1982). Differences in vascular pattern between the spontaneous and the transplanted C3H mouse mammary carcinoma. Eur J Cancer Clin Oncol 18: 155–165.

    Article  CAS  Google Scholar 

  • Folkman, J. (1976). The vascularization of tumors. Sci Am 234: 58–64, 70–73.

    Article  CAS  Google Scholar 

  • Folkman, J. & D’Amore, P. A. (1996). Blood vessel formation: what is its molecular basis? Cell 87: 1153–1155.

    Article  CAS  Google Scholar 

  • Gerlowski, L. E. & Jain, R. K. (1986). Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31: 288–305.

    Article  CAS  Google Scholar 

  • Goodall, C. M., Sanders, A. G. & Shubik, P. (1965). Studies of vascular patterns in living tumors with a transparent chamber inserted in the hamster cheek pouch. J Natl Cancer Inst 35: 497–521.

    Article  CAS  Google Scholar 

  • Grunt, T. W., Lametschwandtner, A., Karrer, K. & Staindl, O. (1986). The angioarchitecture of the Lewis lung carcinoma in laboratory mice. A light microscopic and scanning electron microscopic study. Scan Electron Microsc 557–573

  • Jain, R. K. (1988). Determinants of tumor blood flow: a review. Cancer Res 48: 2641–2658.

    CAS  PubMed  Google Scholar 

  • Konerding, M. A., Fait, E., Dimitropoulou, C., Malkusch, W., Ferri, C., Giavazzi, R., Coltrini, D. & Presta, M. (1998). Impact of Fibroblast Growth Factor-2 on tumor microvascular architecture: a tridimensional morphometric study. Am J Pathol 152: 1607–1616.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konerding, M. A., Steinberg, F. & Budach, V. (1989). The vascular system of xenotransplanted tumors: scanning electron and light microscopic studies. Scanning Microsc 3: 327–336.

    CAS  PubMed  Google Scholar 

  • Konerding, M. A., Steinberg, F., van Ackern, C., Budach, V. & Streffer, C. (1992). Comparative ultratructural studies of the vascularity in different human xenografted tumours. In Immunodeficient Mice in Oncology. Contributions to Oncology Fiebig HH and Berger DP (eds), pp. 169–179. Karger: Basel

    Chapter  Google Scholar 

  • Less, J. R., Skalak, T. C., Sevick, E. M. & Jain, R. K. (1991). Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51: 265–273.

    CAS  PubMed  Google Scholar 

  • Lewis, W. H. (1927). The vascular patterns of tumors. Johns Hopkins Hosp Bull 41: 156–175.

    Google Scholar 

  • Malkusch, W., Konerding, M. A., Klapthor, B. & Bruch, J. (1995). A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization. Anal Cell Pathol 9: 69–81.

    CAS  PubMed  Google Scholar 

  • Margulis, A. R., Carlsson, E. & McAllister, W. H. (1961). Angiography of malignant tumors in mice. Acta Radiol 56: 179–192.

    Article  CAS  Google Scholar 

  • Milne, E. N., Margulis, A. R., Noonan, C. D. & Stoughton, J. T. (1967). Histologic type-specific vascular patterns in rat tumors. Cancer 20: 1635–1646.

    Article  CAS  Google Scholar 

  • Solesvik, O. V., Rofstad, E. K. & Brustad, T. (1982). Vascular structure of five human malignant melanomas grown in athymic nude mice. Br J Cancer 46: 557–567.

    Article  CAS  Google Scholar 

  • Thiersch, C. (1865). Der Epithelialkrebs namentlich der Haut. Engelmann: Leipzig

  • Thomlinson, R. H. & Gray, L. H. (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539

    Article  CAS  Google Scholar 

  • Vaupel, P. & Gabbert, H. (1986). Evidence for and against a tumor type-specific vascularity. Strahlenther Onkol 162: 633–638.

    CAS  PubMed  Google Scholar 

  • Virchow, R. (1863). Die krankhaften Geschwülste. Berlin: Hirschwald

  • Warren, B. A. (1979). Tumor angiogenesis. In Tumor Blood Circulation. Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors Peterson HI (ed), pp. 47–75. CRC Press: Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Anatomy, Johannes Gutenberg-University Mainz, Becherweg 13, Mainz, D-55099, Germany

    M A Konerding, B Klapthor, C van Ackern & E Fait

  2. Carl Zeiss Vision GmbH, Oskar-von-Miller-Str. 1, Eching, D-85386, Germany

    W Malkusch

  3. Gray Laboratory Cancer Research Trust, P.O. Box 100, Mount Vernon Hospital, Northwood, HA6 2JR, Middlesex, UK

    S A Hill, C Parkins & D J Chaplin

  4. Department of Biochemical Sciences and Biotechnology, School of Medicine, University of Brescia, Via Valsabbina 19, Brescia, I-25123, Italy

    M Presta

  5. Oncology Department, Umeå University, Umeå, S-901-85, Sweden

    J Denekamp

Authors
  1. M A Konerding
    View author publications

    Search author on:PubMed Google Scholar

  2. W Malkusch
    View author publications

    Search author on:PubMed Google Scholar

  3. B Klapthor
    View author publications

    Search author on:PubMed Google Scholar

  4. C van Ackern
    View author publications

    Search author on:PubMed Google Scholar

  5. E Fait
    View author publications

    Search author on:PubMed Google Scholar

  6. S A Hill
    View author publications

    Search author on:PubMed Google Scholar

  7. C Parkins
    View author publications

    Search author on:PubMed Google Scholar

  8. D J Chaplin
    View author publications

    Search author on:PubMed Google Scholar

  9. M Presta
    View author publications

    Search author on:PubMed Google Scholar

  10. J Denekamp
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Konerding, M., Malkusch, W., Klapthor, B. et al. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 80, 724–732 (1999). https://doi.org/10.1038/sj.bjc.6690416

Download citation

  • Received: 13 July 1998

  • Revised: 27 November 1998

  • Accepted: 10 December 1998

  • Published: 23 April 1999

  • Issue date: 01 May 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690416

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • tumour
  • rodents
  • xenografts
  • vascular pattern
  • microvascular corrosion casting

This article is cited by

  • Therapy-induced modulation of tumor vasculature and oxygenation in a murine glioblastoma model quantified by deep learning-based feature extraction

    • Nadine Bauer
    • Daniel Beckmann
    • Friedemann Kiefer

    Scientific Reports (2024)

  • Vessel size as a marker of survival in estrogen receptor positive breast cancer

    • Vladan Milosevic
    • Reidunn J. Edelmann
    • Arne Östman

    Breast Cancer Research and Treatment (2023)

  • Study of the calculation of the oxygen enhancement ratio for a carbon ion beam with fraction and linear energy transfer using various survival models

    • Denis Yoo
    • Jeong-Yub Kim
    • Eun Ho Kim

    Journal of the Korean Physical Society (2022)

  • A comparative analysis of cell surface targeting aptamers

    • Linsley Kelly
    • Keith E. Maier
    • Matthew Levy

    Nature Communications (2021)

  • Tumor Ensemble-Based Modeling and Visualization of Emergent Angiogenic Heterogeneity in Breast Cancer

    • Spyros K. Stamatelos
    • Akanksha Bhargava
    • Arvind P. Pathak

    Scientific Reports (2019)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited