Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
Production of VEGF and expression of the VEGF receptors Flt-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumours
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 23 April 1999

Production of VEGF and expression of the VEGF receptors Flt-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumours

  • V Speirs1 &
  • S L Atkin1 

British Journal of Cancer volume 80, pages 898–903 (1999)Cite this article

  • 899 Accesses

  • 55 Citations

  • 6 Altmetric

  • Metrics details

This article has been updated

Summary

Production of vascular endothelial growth factor (VEGF) and expression of its receptors Flt-1 and KDR was determined in primary cultures of separated epithelial and stromal-enriched cultures derived from ten primary human breast carcinomas. By enzyme-linked immunosorbent assay, epithelial cells produced a mean VEGF of 33 ± 7 pg ml–1 μg–1 RNA (range 11–70). Stromal cells produced similar levels, with a mean of 48 ± 11 pg ml–1 μg–1 RNA (range 7–92). This was significantly greater than the amount produced by similar cultures derived from normal breast tissue (epithelial mean 19 ± 5 pg ml–1 μg–1 RNA, range 9–34, P < 0.05 vs tumour epithelial culture; stromal mean 26 ± 8 pg ml–1 μg–1 RNA, range 3–56). Flt-1 and KDR receptors were analysed by semi-quantitative reverse transcription polymerase chain reaction. Flt-1 was expressed by four of six epithelial and five of six stromal cultures. When expressed by both cell types, Flt-1 appeared to be significantly more abundant on stromal cells compared with epithelial cultures. Only a single tumour, a lobular carcinoma, failed to express Flt-1 on either cell type. With KDR, the reverse was true with constitutive expression of this receptor by epithelial cultures and zero or reduced (3/6) expression by stromal cultures. Differences in the expression pattern of VEGF receptors may reflect a differential response to VEGF by specific cell types. Thus, production of VEGF and expression of VEGF receptors Flt-1 and KDR by breast cancer epithelial and stromal cells suggests that VEGF may fulfil not only an angiogenic role, but also play a fundamental role as an autocrine/paracrine regulator in breast cancer, thereby facilitating tumour proliferation and subsequent invasion.

Similar content being viewed by others

Targeting tumor cell-derived CCL2 as a strategy to overcome Bevacizumab resistance in ETV5+ colorectal cancer

Article Open access 24 October 2020

Epigenetic modulation of VEGF-A/VEGFR2 pathway genes in OC/TME axis driving genetic upregulation and tumor plasticity

Article Open access 07 October 2025

VEGF-C mediates tumor growth and metastasis through promoting EMT-epithelial breast cancer cell crosstalk

Article 09 December 2020

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Adams, E. F., Rafferty, B. & White, M. C. (1991). Interleukin-6 is secreted by breast fibroblasts and stimulates 17β-estradiol oxidoreductase activity of MCF-7 cells: possible paracrine regulation of breast 17β-estradiol levels. Int J Cancer 49: 118–121.

    Article  CAS  Google Scholar 

  • Boocock, C. A., Charnock-Jones, S., Sharkey, A. M., McLaren, J., Barker, P. J., Wright, K. A., Twentyman, P. R. & Smith, S. K. (1995). Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst 87: 506–516.

    Article  CAS  Google Scholar 

  • Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., Senger, D. R., Connolly, J. L. & Schnitt, S. J. (1995). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 26: 86–91.

    Article  CAS  Google Scholar 

  • Charnock-Jones, D. S., Sharkey, A. M., Boocock, C. A., Ahmed, A., Plevin, R., Ferrara, N. & Smith, S. K. (1994). Vascular endothelial growth factor receptor localisation and activation in human trophoblast and choriocarcinoma cells. Biol Reprod 51: 524–530.

    Article  CAS  Google Scholar 

  • Cohen, T., Nahari, D., Cerem, L. W., Neufeld, G. & Levi, B-Z (1996). Interleukin-6 induces the expression of vascular endothelial growth factor. J Biol Chem 271: 736–741.

    Article  CAS  Google Scholar 

  • Dirix, L. Y., Vermeulen, P. B., Pawinski, A., Prove, A., Benoy, I., de Pooter, C., Martin, M. & van Oosterom, A. T. (1997). Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br J Cancer 76: 238–243.

    Article  CAS  Google Scholar 

  • de Jong, J. S., van Diest, P. J., van der Valk, P. & Baak, J. P. A. (1998). Expression of growth factors, growth inhibiting factors and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. J Pathol 184: 44–52.

    Article  CAS  Google Scholar 

  • de Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, F. & Williams, L. T. (1992). The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989–991.

    Article  CAS  Google Scholar 

  • Eppenberger, U., Kueng, W., Schlaeppi, J. M., Roesel, J. L., Benz, C., Mueller, H., Matter, A., Zuber, M., Luescher, K., Litschgi, M., Schmitt, M., Foekens, J. A. & Eppenberger-Castori, S. (1998). Markers of tumor angiogenesis and proteolysis independently define high- and low-risk subsets of node-negative breast cancer patients. J Clin Oncol 16: 3129–3136.

    Article  CAS  Google Scholar 

  • Ergun, S., Kilic, N., Fiedler, W. & Mukhopadhyay, A. K. (1997). Vascular endothelial growth factor and its receptors in normal human testicular tissue. Mol Cell Endocrinol 131: 9–20.

    Article  CAS  Google Scholar 

  • Ferrara, N. & Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endo Rev 18: 4–25.

    Article  CAS  Google Scholar 

  • Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent?. J Natl Cancer Inst 82: 4–6.

    Article  CAS  Google Scholar 

  • Fukamara, D., Xavier, R., Sugiura, T., Chen, Y., Park, E-C, Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R. K. & Seed, B. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715–725.

    Article  Google Scholar 

  • Gitay-Goren, H., Halaban, R. & Neufeld, G. (1993). Human melanoma cells but not normal melanocytes express vascular endothelial growth factor receptors. Biochem Biophys Res Commun 190: 702–708.

    Article  CAS  Google Scholar 

  • Green, A. R., Green, V. L., White, M. C. & Speirs, V. (1997). Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. Int J Cancer 72: 937–941.

    Article  CAS  Google Scholar 

  • Green, V. L., Atkin, S. L., Speirs, V., Jeffreys, R. V., Landolt, A. M., Mathew, B., Hipkin, L. & White, M. C. (1996). Cytokine expression in human anterior pituitary adenomas. Clin Endo 45: 179–185.

    Article  CAS  Google Scholar 

  • Hewett, P. W. & Murray, J. C. (1996). Coexpression of flt-1, flt-4 and KDR in freshly isolated and cultured human endothelial cells. Biochem Biophys Res Commun 221: 697–702.

    Article  CAS  Google Scholar 

  • Hlatky, L., Tsionou, C., Hahnfeldt, P. & Coleman, C. N. (1994). Mammary fibroblasts may influence breast tumour angiogenesis via hypoxia-induced vascular endothelial growth factor up-regulation and protein expression. Cancer Res 54: 6083–6086.

    CAS  PubMed  Google Scholar 

  • Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A. & Ferrara, N. (1992). Binding sites for vascular endothelial growth factor are localised on endothelial cells in adult rat tissues. J Clin Invest 89: 244–253.

    Article  CAS  Google Scholar 

  • Kendall, R. L., Wang, G. & Thomas, K. A. (1996). Identification of a soluble form of the vascular endothelial growth factor receptor flt-1 and its heterodimerisation with KDR. Biochem Biophys Res Commun 226: 234–328.

    Article  Google Scholar 

  • Klagsbrun, M. & Soker, S. (1993). VEGF/VPS: the angiogenesis factor found?. Curr Biol 3: 699–702.

    Article  CAS  Google Scholar 

  • Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., Elner, S. G. & Strieter, R. M. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798–1801.

    Article  CAS  Google Scholar 

  • Linderholm, B., Tavelin, B., Grankvist, K. & Henriksson, R. (1998). Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol 16: 3121–3128.

    Article  CAS  Google Scholar 

  • Lu, Q. & Brodie, A. (1996). Stimulation of the growth of MCF-7 and MDA-MB-468 breast cancer cells by vascular endothelial growth factor. Proc Am Assoc Cancer Res 37: 1499

    Google Scholar 

  • Scott, P. A. E., Smith, K., Poulsom, R., De Benedetti, A., Bicknell, R. & Harris, A. L. (1998). Differential expression of vascular endothelial growth factor mRNA vs. protein isoform expression in human breast cancer and relationship to elF-4E. Br J Cancer 77: 2120–2128.

    Article  CAS  Google Scholar 

  • Seetharam, L., Gotoh, N., Maru, Y., Neufeld, G., Yamaguchi, S. & Shibuya, M. A. (1995). A unique signal transduction pathway for the flt-1 tyrosine kinase receptor, a receptor for vascular endothelial growth factor. Oncogene 10: 135–147.

    CAS  PubMed  Google Scholar 

  • Speirs, V., Green, A. R. & White, M. C. (1996a). Collagenase III: a superior enzyme for complete disaggregation and improved viability of normal and malignant human breast tissue. In Vitro Cell Dev Biol 32: 72–74.

    Article  CAS  Google Scholar 

  • Speirs, V., Green, A. R. & White, M. C. (1996b). A comparative study of cytokine gene transcripts in normal and malignant breast tissue and primary cell cultures derived from the same tissue samples. Int J Cancer 66: 551–556.

    Article  CAS  Google Scholar 

  • Speirs, V., Green, A. R., Walton, D. S., Kerin, M. J., Carleton, P. J., Fox, J. N., Desai, S. B. & Atkin, S. L. (1998). Short-term primary culture of epithelial cells derived from breast tumours. Br J Cancer 78: 1412–1429.

    Article  Google Scholar 

  • Terman, B. I., Dougher-Vermazen, M., Carrion, M. E., Dimitrov, D., Armellino, D. C., Gospodarowicz, D. & Bohlen, P. (1992). Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor. Biochem Biophys Res Commun 187: 1579–1586.

    Article  CAS  Google Scholar 

  • Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fides, J. C. & Abraham, J. A. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266: 11947–11954.

    CAS  PubMed  Google Scholar 

  • Toi, M., Kashitani, L. & Tominaga, T. (1993). Tumour angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 55: 371–374.

    Article  CAS  Google Scholar 

  • Toi, M., Kondo, S., Suzuki, H., Yamamoto, Y., Inada, K., Imazawa, T., Taniguchi, T. & Tominaga, T. (1996). Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77: 1101–1106.

    Article  CAS  Google Scholar 

  • Waltenberger, J., Claesson-Welch, L., Siegbahn, A., Shibuya, M. & Heldin, C-H (1994). Different signal transduction properties of KDR and Flt-1, two receptors for vascular endothelial growth factor. J Biol Chem 269: 26988–26955.

    CAS  PubMed  Google Scholar 

  • Yoshiji, H., Gomez, D. E., Shibuya, M. & Thorgeirsson, U. P. (1996). Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res 56: 2013–2016.

    CAS  PubMed  Google Scholar 

  • Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. (1991). Tumour angiogenesis and metastasis: correlation in invasive breast cancer. N Engl J Med 324: 1–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Medicine, Medical Research Laboratory, Wolfson Building, University of Hull, Hull, HU6 7RX, UK

    V Speirs & S L Atkin

Authors
  1. V Speirs
    View author publications

    Search author on:PubMed Google Scholar

  2. S L Atkin
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Speirs, V., Atkin, S. Production of VEGF and expression of the VEGF receptors Flt-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumours. Br J Cancer 80, 898–903 (1999). https://doi.org/10.1038/sj.bjc.6690438

Download citation

  • Received: 26 August 1998

  • Revised: 30 November 1998

  • Accepted: 09 December 1998

  • Published: 23 April 1999

  • Issue date: 01 May 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690438

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • breast
  • cancer
  • VEGF
  • angiogenesis

This article is cited by

  • Effects of bisphenol A and 17β-estradiol on vascular endothelial growth factor A and its receptor expression in the non-cancer and cancer ovarian cell lines

    • Anna Ptak
    • Ewa L. Gregoraszczuk

    Cell Biology and Toxicology (2015)

  • Exploiting the tumor microenvironment in the development of targeted cancer gene therapy

    • G J Dougherty
    • S T Dougherty

    Cancer Gene Therapy (2009)

  • Expression of VEGF and VEGFR2 in tumors during neoadjuvant therapy of patients with breast cancer

    • E. A. Kim
    • E. S. Gershtein
    • N. E. Kushlinskii

    Bulletin of Experimental Biology and Medicine (2008)

  • Phosphorylated KDR expression in endometrial cancer cells relates to HIF1α/VEGF pathway and unfavourable prognosis

    • Alexandra Giatromanolaki
    • Michael I Koukourakis
    • Kevin C Gatter

    Modern Pathology (2006)

  • Activation of mitogenic pathways and sensitization to estrogen-induced apoptosis: two independent characteristics of tamoxifen-resistant breast cancer cells?

    • Alexander M. Scherbakov
    • Yulia S. Lobanova
    • Mikhail A. Krasil’nikov

    Breast Cancer Research and Treatment (2006)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited