Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

British Journal of Cancer
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. british journal of cancer
  3. regular article
  4. article
α-Bromoacryloyl derivative of distamycin A (PNU 151807): a new non-covalent minor groove DNA binder with antineoplastic activity
Download PDF
Download PDF
  • Regular Article
  • Open access
  • Published: 07 May 1999

α-Bromoacryloyl derivative of distamycin A (PNU 151807): a new non-covalent minor groove DNA binder with antineoplastic activity

  • S Marchini1,
  • M Cirò1,
  • F Gallinari1,
  • C Geroni2,
  • P Cozzi2,
  • M D’Incalci1 &
  • …
  • M Broggini1 

British Journal of Cancer volume 80, pages 991–997 (1999)Cite this article

  • 841 Accesses

  • 22 Citations

  • 3 Altmetric

  • Metrics details

This article has been updated

Summary

PNU 151807 is a new synthetic α-bromoacryloyl derivative of distamycin A. In the present study we investigated the DNA interaction and the mechanism of action of this compound in parallel with the distamycin alkylating derivative, tallimustine. PNU 151807 possesses a good cytotoxic activity in in vitro growing cancer cells, even superior to that found for tallimustine. By footprinting experiments we found that PNU 151807 and tallimustine interact non-covalently with the same AT-rich DNA regions. However, differently from tallimustine, PNU 151807 failed to produce any DNA alkylation as assessed by Taq stop assay and N3 or N7-adenine alkylation assay in different DNA sequences. PNU 151807, like tallimustine, is able to induce an activation of p53, and consequently of p21 and BAX in a human ovarian cancer cell line (A2780) expressing wild-type p53. However, disruption of p53 function by HPV16-E6 does not significantly modify the cytotoxic activity of the compound. Flow cytometric analysis of cells treated with equitoxic concentrations of PNU 151807 and tallimustine showed a similar induction of accumulation of cells in the G2 phase of the cell cycle but with a different time course. When tested against recombinant proteins, only the compound PNU 151807 (and not tallimustine or distamycin A) is able to abolish the in vitro kinase activity of CDK2–cyclin A, CDK2–cyclin E and cdc2–cyclin B complexes. The results obtained showed that PNU 151807 seems to have a mechanism of action completely different from that of its parent compound tallimustine, possibly involving the inhibition of cyclin-dependent kinases activity, and clearly indicate PNU 151807 as a new non-covalent minor groove binder with cytotoxic activity against cancer cells.

Similar content being viewed by others

Semisynthesis of 5-O-ester derivatives of renieramycin T and their cytotoxicity against non-small-cell lung cancer cell lines

Article Open access 06 December 2023

Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs

Article Open access 05 January 2022

DNA binding, and apoptosis-inducing activities of a β-ionone-derived ester in human myeloid leukemia cells: multispectral and molecular dynamic simulation analyses

Article Open access 14 November 2024

Article PDF

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Beccaglia, P., Grimaldi, K. A., Hartley, J. A., Marchini, S., Broggini, M. & D’Incalci, M. (1996). DNA adduct formation of the sequence selective cytotoxic agent tallimustine resolved at the nucleotide level in a single copy gene in mammalian cells. Br J Cancer 73: 12

    Google Scholar 

  • Bonfanti, M., Taverna, S., D’Incalci, M. & Broggini, M. (1997). p21 WAF-derived peptides linked to an internalization peptide inhibit human cancer cell growth. Cancer Res 57: 1442–1446.

    CAS  Google Scholar 

  • Broggini, M., Erba, E., Ponti, M., Ballinari, D., Geroni, C., Spreafico, F. & D’Incalci, M. (1991). Selective DNA interaction of the novel distamycin derivative FCE 24517. Cancer Res 51: 199–204.

    CAS  Google Scholar 

  • Broggini, M., Coley, H. M., Mongelli, N., Pesenti, E., Wyatt, M. D., Hartley, J. A. & D’Incalci, M. (1995). DNA sequence-specific adenine alkylation by the novel antitumor drug tallumustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin. Nucleic Acids Res 23: 81–87.

    Article  CAS  PubMed Central  Google Scholar 

  • Coley, H. M., Broggini, M. & D’Incalci, M. (1990). Studies of the novel distamycin compound FCE 24517 with respect to DNA interaction and sensitivity to alkylating agents. Br J Cancer 62: 506–500.

    Google Scholar 

  • D’Alessio, R., Geroni, C., Biasoli, G., Pesenti, E., Grandi, M. & Mongelli, N. (1994). Structure activity relationship of novel distamycin A derivatives: synthesis and antitumor activity. Bioorganic Med Chem Lett 4: 1467–1472.

    Article  Google Scholar 

  • D’Incalci, M. (1994). DNA-minor groove alkylators, a new class of anticancer agents. Ann Oncol 5: 877–878.

    Article  Google Scholar 

  • D’Incalci, M. & Sessa, C. (1997). DNA minor groove binding ligands: a new class of anticancer agents. Exp Opin Invest Drugs 6: 875–884.

    Article  Google Scholar 

  • Drees, M., Dengler, W. A., Roth, T., Labonte, H., Mayo, J., Malspeis, L., Grever, M., Sausville, E. A. & Fiebig, H. H. (1997). Flavopiridol (L86-8275): selective antitumor activity in vitro and activity in vivo for prostate carcinoma cells. Clin Cancer Res 3: 273–279.

    CAS  Google Scholar 

  • Geroni, C., Pesenti, E., Tagliabue, G., Ballinari, D., Mongelli, N., Broggini, M., Erba, E., D’Incalci, M., Spreafico, F. & Grandi, M. (1993). Establishment of L1210 leukemia cells resistant to the distamycin-A derivative (FCE 24517): characterization and cross-resistance studies. Int J Cancer 53: 308–314.

    Article  CAS  Google Scholar 

  • Ghielmini, M., Bosshard, G., Capolongo, L., Geroni, C., Pesenti, E., Torri, V., D’Incalci, M., Cavalli, F. & Sessa, C. (1997). Estimation of the haematological toxicity of minor groove alkylators using tests on human cord blood cells. Br J Cancer 75: 878–883.

    Article  CAS  PubMed Central  Google Scholar 

  • Hartley, J. A., Gibson, N. W., Kohn, K. W. & Mattes, W. B. (1986). DNA sequence selectivity of guanine-N7 alkylation by three antitumor chloroethylating agents. Cancer Res 46: 1943–1947.

    CAS  PubMed  Google Scholar 

  • Hartley, J. A., Lown, J. W., Mattes, W. B. & Kohn, K. W. (1988). DNA sequence specificity of antitumor agents. Oncogenes as possible targets for cancer therapy. Acta Oncol 27: 503–510.

    Article  CAS  Google Scholar 

  • Hertzberg, R. P. & Dervan, P. B. (1984). Cleavage of DNA with Methidiumpropyl-EDTA-Iron(II): reaction conditions and product analyses. Biochemistry 23: 3934–3945.

    Article  CAS  Google Scholar 

  • Hurley, L. H., Reynolds, V. L., Swenson, D. H., Petzold, G. L. & Scahill, T. A. (1984). Reaction of the antitumoral antibiotic CC-1065 with DNA: structure of DNA adduct with sequence specificity. Science 226: 843–844.

    Article  CAS  Google Scholar 

  • Lee, M., Rhodens, L., Wyatt, M. D., Forrow, S. & Hartley, J. A. (1993). Design, synthesis, and biological evaluation of DNA sequence and minor groove selective alkylating agents. Anticancer Drug Des 8: 173–192.

    CAS  PubMed  Google Scholar 

  • Li, L. H., Swenson, D., Schpock, S., Kuentzel, S., Dayton, B. & Kreiger, W. (1982). CC-1065 (NSC-298223) a novel antitumour agent that interacts strongly with double-stranded DNA. Cancer Res 42: 999–1004.

    CAS  PubMed  Google Scholar 

  • Li, L. H., Dekoning, T. F. & Kelly, R. C. (1992). Cytotoxicity and antitumor activity of carzelesin, a prodrug cyclopropylpyrroloindole analogue. Cancer Res 52: 4904–4913.

    CAS  Google Scholar 

  • Marchini, S., Gonzales Paz, O., Ripamonti, M., Geroni, C., Bargiotti, A., Caruso, M., Todeschi, S., D’Incalci, M. & Broggini, M. (1995). Sequence-specific DNA interactions by novel alkylating anthracycline derivatives. Anticancer Drug Des 10: 641–653.

    CAS  PubMed  Google Scholar 

  • Marchini, S., Cozzi, P., Beria, I., Geroni, C., Capolongo, L., D’Incalci, M. & Broggini, M. (1998). Sequence specific DNA alkylation of novel tallimustine derivatives. Anticancer Drug Des 13: (in press)

  • Mattes, W. B., Hartley, J. A. & Kohn, K. W. (1986). DNA sequence selectivity of guanine-N7 alkylation by nitrogen mustards. Nucleic Acids Res 14: 2971–2987.

    Article  CAS  PubMed Central  Google Scholar 

  • Ponti, M., Forrow, S. M., Souhami, R. L., D’Incalci, M. & Hartley, J. H. (1991). Measurement of the sequence specificity of covalent DNA modification by antineoplastic agents using Taq DNA polymerase. Nucleic Acids Res 19: 2929–2933.

    Article  CAS  PubMed Central  Google Scholar 

  • Reynolds, V. L., Molineux, I. J., Kaplan, D. J., Swenson, D. H. & Hurley, L. H. (1985). Reaction of the antitumor antibiotic CC-1065 with DNA. Location of the site of thermally induced strand breakage and analysis of DNA sequence specificity. Biochemistry 24: 6228–6237.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsh, E. & Maniatis, T. (1989). Molecolar Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

  • Sessa, C., Pagani, O., Zurlo, M. G., Jong, D. E., Hoffmann, C., Lassus, M., Marrari, P., Strolin,, Benedetti, M. & Cavalli, F. (1994). Phase I study of the novel distamycin derivative tallimustine (FCE 24517). Ann Oncol 5: 901–907.

    Article  CAS  Google Scholar 

  • Sun, D. & Hurley, L. H. (1992). Effect of the (+)-CC-1065-(N3-adenine) DNA adduct on in vitro DNA synthesis mediated by Escherichia coli DNA polymerase. Biochemistry 31: 2822–2829.

    Article  CAS  Google Scholar 

  • Tishler, R. B., Lamppu, D. M., Park, S. & Price, B. D. (1995). Microtubule-active drugs taxol, vinblastine, and nocodazole increase the levels of transcriptionally active p53. Cancer Res 55: 6021–6025.

    CAS  PubMed  Google Scholar 

  • Vikhanskaya, F., Erba, E., D’Incalci, M. & Broggini, M. (1994). Introduction of wild-type p53 in human ovarian cancer cell line not expressing endogenous p53. Nucleic Acids Res 22: 1012–1017.

    Article  CAS  PubMed Central  Google Scholar 

  • Vikhanskaya, F., Vignati, S., Beccaglia, P., Ottoboni, C., Russo, P., D’Incalci, M. & Broggini, M. (1998). Inactivation of p53 in a human ovarian cancer cell line increases the sensitivity to paclitaxel by inducing G2/M arrest and apoptosis. Exp Cell Res 241: 96–101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Oncology, Molecular Pharmacology Unit, Istituto di Ricerche Farmacologiche, ‘Mario Negri’ via Eritrea 62, Milan, 20157, Italy

    S Marchini, M Cirò, F Gallinari, M D’Incalci & M Broggini

  2. Pharmacia & Upjohn, Nerviano, Italy

    C Geroni & P Cozzi

Authors
  1. S Marchini
    View author publications

    Search author on:PubMed Google Scholar

  2. M Cirò
    View author publications

    Search author on:PubMed Google Scholar

  3. F Gallinari
    View author publications

    Search author on:PubMed Google Scholar

  4. C Geroni
    View author publications

    Search author on:PubMed Google Scholar

  5. P Cozzi
    View author publications

    Search author on:PubMed Google Scholar

  6. M D’Incalci
    View author publications

    Search author on:PubMed Google Scholar

  7. M Broggini
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and permissions

About this article

Cite this article

Marchini, S., Cirò, M., Gallinari, F. et al. α-Bromoacryloyl derivative of distamycin A (PNU 151807): a new non-covalent minor groove DNA binder with antineoplastic activity. Br J Cancer 80, 991–997 (1999). https://doi.org/10.1038/sj.bjc.6690453

Download citation

  • Received: 17 July 1998

  • Revised: 04 January 1999

  • Accepted: 06 January 1999

  • Published: 07 May 1999

  • Issue date: 01 June 1999

  • DOI: https://doi.org/10.1038/sj.bjc.6690453

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • minor groove binders
  • cyclin-dependent kinases
  • DNA binding
  • anticancer agents

This article is cited by

  • Brostallicin (PNU-166196) – a new DNA minor groove binder that retains sensitivity in DNA mismatch repair-deficient tumour cells

    • A Fedier
    • C Fowst
    • D Fink

    British Journal of Cancer (2003)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • Special Issues
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

British Journal of Cancer (Br J Cancer)

ISSN 1532-1827 (online)

ISSN 0007-0920 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited